
BFF: Foundational and Automated Verification of
Bitfield-Manipulating Programs

Fengmin (Paul) Zhu Michael Sammler Rodolphe Lepigre
Derek Dreyer Deepak Garg

Max Planck Institute for Software Systems

December 9, 2022

Paul (MPI-SWS) BFF December 9, 2022 1 / 27

Bit Operations Are Used to ...

Perform efficient arithmetic computation

Realize cryptography algorithms

Bitfield Manipulation: manipulate the bitfields packed in integers,
e.g., network packet headers, page table entries

Paul (MPI-SWS) BFF December 9, 2022 2 / 27

Bit Operations Are Used to ...

Perform efficient arithmetic computation

Realize cryptography algorithms

Bitfield Manipulation: manipulate the bitfields packed in integers,
e.g., network packet headers, page table entries

Paul (MPI-SWS) BFF December 9, 2022 2 / 27

Bit Operations Are Used to ...

Perform efficient arithmetic computation

Realize cryptography algorithms

Bitfield Manipulation: manipulate the bitfields packed in integers,
e.g., network packet headers, page table entries

Paul (MPI-SWS) BFF December 9, 2022 2 / 27

Bitfield Manipulation: An Example

01234567

unused owner execute write read

Figure: A u8-integer encoding the metadata of a file header.

Paul (MPI-SWS) BFF December 9, 2022 3 / 27

Bitfield Manipulation: An Example

01234567

unused owner execute write read

Figure: A u8-integer encoding the metadata of a file header.

Paul (MPI-SWS) BFF December 9, 2022 3 / 27

Bitfield Manipulation: An Example

01234567

unused owner execute write read

Figure: A u8-integer encoding the metadata of a file header.

Paul (MPI-SWS) BFF December 9, 2022 3 / 27

Bitfield Manipulation: An Example

01234567

unused owner execute write read

Figure: A u8-integer encoding the metadata of a file header.

Paul (MPI-SWS) BFF December 9, 2022 3 / 27

Bitfield Manipulation: An Example

01234567

unused owner execute write read

Figure: A u8-integer encoding the metadata of a file header.

Paul (MPI-SWS) BFF December 9, 2022 3 / 27

Bitfield Manipulation: An Example

01234567

unused owner execute write read

Figure: A u8-integer encoding the metadata of a file header.

#include <linux/bitops.h> // BIT macro
bool is_writeable(uint8_t header) {

return (header & BIT(1)) != 0; // BIT(1) = 0b10
}

Paul (MPI-SWS) BFF December 9, 2022 3 / 27

Bitfield Manipulation: An Example

01234567

unused owner execute write read

Figure: A u8-integer encoding the metadata of a file header.

#include <linux/bitops.h> // BIT macro
bool is_writeable(uint8_t header) {

return (header & BIT(1)) != 0; // BIT(1) = 0b10
}

Paul (MPI-SWS) BFF December 9, 2022 3 / 27

Bitfield Manipulation is Everywhere in Systems Programming

Page tables

Memory allocators

Network protocols

Device drivers

...

Linux kernel

Bitfield manipulation
(&, |, ~, <<, >>)

Paul (MPI-SWS) BFF December 9, 2022 4 / 27

Bitfield Manipulation is Everywhere in Systems Programming

Page tables

Memory allocators

Network protocols

Device drivers

...

Linux kernel

Bitfield manipulation
(&, |, ~, <<, >>)

Paul (MPI-SWS) BFF December 9, 2022 4 / 27

Bitfield Manipulation is Everywhere in Systems Programming

Page tables

Memory allocators

Network protocols

Device drivers

...

Linux kernel

Bitfield manipulation
(&, |, ~, <<, >>)

Paul (MPI-SWS) BFF December 9, 2022 4 / 27

Two Goals, Simultaneously

Foundational

Automated

Paul (MPI-SWS) BFF December 9, 2022 5 / 27

Two Goals, Simultaneously

Foundational

Automated

Proofs are machine-checkable in proof assistants

Paul (MPI-SWS) BFF December 9, 2022 5 / 27

Two Goals, Simultaneously

Foundational

Automated

Proofs are machine-checkable in proof assistants

Proofs are mostly inferred

Paul (MPI-SWS) BFF December 9, 2022 5 / 27

Our Starting Point: RefinedC

Automating the foundational verification of
C code with refined ownership types
[Sammler et al., PLDI 2021]

+ Bitfield manipulation support
(our work)

Paul (MPI-SWS) BFF December 9, 2022 6 / 27

Our Starting Point: RefinedC

Automating the foundational verification of
C code with refined ownership types
[Sammler et al., PLDI 2021]

+ Bitfield manipulation support
(our work)

Paul (MPI-SWS) BFF December 9, 2022 6 / 27

Refinement Types in RefinedC

r @ tyConstr⟨T1,T2, . . .⟩

Builtin-types:

Integer type n @ int⟨α⟩
Boolean type b @ bool
Ownership type l @ &own⟨τ⟩
. . .

Types are semantically defined (in Iris separation logic).

Typing rules are propositions and their soundness has been proven in Coq-Iris.

Paul (MPI-SWS) BFF December 9, 2022 7 / 27

Refinement Types in RefinedC

r @ tyConstr⟨T1,T2, . . .⟩

Builtin-types:

Integer type n @ int⟨α⟩
Boolean type b @ bool
Ownership type l @ &own⟨τ⟩
. . .

Types are semantically defined (in Iris separation logic).

Typing rules are propositions and their soundness has been proven in Coq-Iris.

Paul (MPI-SWS) BFF December 9, 2022 7 / 27

Refinement Types in RefinedC

r @ tyConstr⟨T1,T2, . . .⟩

Builtin-types:

Integer type n @ int⟨α⟩
Boolean type b @ bool
Ownership type l @ &own⟨τ⟩
. . .

Types are semantically defined (in Iris separation logic).

Typing rules are propositions and their soundness has been proven in Coq-Iris.

Paul (MPI-SWS) BFF December 9, 2022 7 / 27

Refinement Types in RefinedC

r @ tyConstr⟨T1,T2, . . .⟩

Builtin-types:

Integer type n @ int⟨α⟩
Boolean type b @ bool
Ownership type l @ &own⟨τ⟩
. . .

{n} where n ∈ N and n ∈ α (α ∈ {i32, u16, . . .})

Types are semantically defined (in Iris separation logic).

Typing rules are propositions and their soundness has been proven in Coq-Iris.

Paul (MPI-SWS) BFF December 9, 2022 7 / 27

Refinement Types in RefinedC

r @ tyConstr⟨T1,T2, . . .⟩

Builtin-types:

Integer type n @ int⟨α⟩
Boolean type b @ bool
Ownership type l @ &own⟨τ⟩
. . .

{b} where b ∈ B

Types are semantically defined (in Iris separation logic).

Typing rules are propositions and their soundness has been proven in Coq-Iris.

Paul (MPI-SWS) BFF December 9, 2022 7 / 27

Refinement Types in RefinedC

r @ tyConstr⟨T1,T2, . . .⟩

Builtin-types:

Integer type n @ int⟨α⟩
Boolean type b @ bool
Ownership type l @ &own⟨τ⟩
. . .

{l} where the location l 7→ v for some v of type τ

Types are semantically defined (in Iris separation logic).

Typing rules are propositions and their soundness has been proven in Coq-Iris.

Paul (MPI-SWS) BFF December 9, 2022 7 / 27

Refinement Types in RefinedC

r @ tyConstr⟨T1,T2, . . .⟩

Builtin-types:

Integer type n @ int⟨α⟩
Boolean type b @ bool
Ownership type l @ &own⟨τ⟩
. . .

Types are semantically defined (in Iris separation logic).

Typing rules are propositions and their soundness has been proven in Coq-Iris.

Paul (MPI-SWS) BFF December 9, 2022 7 / 27

Refinement Types in RefinedC

r @ tyConstr⟨T1,T2, . . .⟩

Builtin-types:

Integer type n @ int⟨α⟩
Boolean type b @ bool
Ownership type l @ &own⟨τ⟩
. . .

Types are semantically defined (in Iris separation logic).

Typing rules are propositions and their soundness has been proven in Coq-Iris.

Paul (MPI-SWS) BFF December 9, 2022 7 / 27

Refinement Types in RefinedC

r @ tyConstr⟨T1,T2, . . .⟩

Builtin-types:

Integer type n @ int⟨α⟩
Boolean type b @ bool
Ownership type l @ &own⟨τ⟩
. . .

Types are semantically defined (in Iris separation logic).

Typing rules are propositions and their soundness has been proven in Coq-Iris.

Paul (MPI-SWS) BFF December 9, 2022 7 / 27

Naive Approach: Reuse Integer Types & Typing Rules in RefinedC

Q: How to automatically discharge the proof obligations in bit vector theory?

A: SMT solvers with a bit vector decision procedure.

Q: Can we do “RefinedC + SMT solver”?

A1: Hard because SMT solvers are not foundational1

A2: Not ideal because bit vector theory is too big a hammer for verifying bitfield
manipulation (only a fragment is needed)

1Studies show the presence of bugs [Mansur et al., FSE 2020, Winterer et al., PLDI 2020]
Paul (MPI-SWS) BFF December 9, 2022 8 / 27

Naive Approach: Reuse Integer Types & Typing Rules in RefinedC

Q: How to automatically discharge the proof obligations in bit vector theory?

A: SMT solvers with a bit vector decision procedure.

Q: Can we do “RefinedC + SMT solver”?

A1: Hard because SMT solvers are not foundational1

A2: Not ideal because bit vector theory is too big a hammer for verifying bitfield
manipulation (only a fragment is needed)

1Studies show the presence of bugs [Mansur et al., FSE 2020, Winterer et al., PLDI 2020]
Paul (MPI-SWS) BFF December 9, 2022 8 / 27

Naive Approach: Reuse Integer Types & Typing Rules in RefinedC

Q: How to automatically discharge the proof obligations in bit vector theory?

A: SMT solvers with a bit vector decision procedure.

Q: Can we do “RefinedC + SMT solver”?

A1: Hard because SMT solvers are not foundational1

A2: Not ideal because bit vector theory is too big a hammer for verifying bitfield
manipulation (only a fragment is needed)

1Studies show the presence of bugs [Mansur et al., FSE 2020, Winterer et al., PLDI 2020]
Paul (MPI-SWS) BFF December 9, 2022 8 / 27

Key Observations & Ideas

In bitfield-manipulating programs:

Bit vectors have structure – we call them structured bit vectors (SBVs)

 Refinement types for SBVs
Developers know the structure

 User annotations for bitfields
Valid bitfield manipulations only use bit operations following restricted patterns

 Typing rules restricted to common bitfield manipulation patterns

Paul (MPI-SWS) BFF December 9, 2022 9 / 27

Key Observations & Ideas

In bitfield-manipulating programs:

Bit vectors have structure – we call them structured bit vectors (SBVs)

 Refinement types for SBVs
Developers know the structure

 User annotations for bitfields
Valid bitfield manipulations only use bit operations following restricted patterns

 Typing rules restricted to common bitfield manipulation patterns

Paul (MPI-SWS) BFF December 9, 2022 9 / 27

Key Observations & Ideas

In bitfield-manipulating programs:

Bit vectors have structure – we call them structured bit vectors (SBVs)

 Refinement types for SBVs

Developers know the structure

 User annotations for bitfields
Valid bitfield manipulations only use bit operations following restricted patterns

 Typing rules restricted to common bitfield manipulation patterns

Paul (MPI-SWS) BFF December 9, 2022 9 / 27

Key Observations & Ideas

In bitfield-manipulating programs:

Bit vectors have structure – we call them structured bit vectors (SBVs)

 Refinement types for SBVs

Developers know the structure

 User annotations for bitfields

Valid bitfield manipulations only use bit operations following restricted patterns

 Typing rules restricted to common bitfield manipulation patterns

Paul (MPI-SWS) BFF December 9, 2022 9 / 27

Key Observations & Ideas

In bitfield-manipulating programs:

Bit vectors have structure – we call them structured bit vectors (SBVs)

 Refinement types for SBVs
Developers know the structure

 User annotations for bitfields

Valid bitfield manipulations only use bit operations following restricted patterns

 Typing rules restricted to common bitfield manipulation patterns

Paul (MPI-SWS) BFF December 9, 2022 9 / 27

Key Observations & Ideas

In bitfield-manipulating programs:

Bit vectors have structure – we call them structured bit vectors (SBVs)

 Refinement types for SBVs
Developers know the structure

 User annotations for bitfields
Valid bitfield manipulations only use bit operations following restricted patterns

 Typing rules restricted to common bitfield manipulation patterns

Paul (MPI-SWS) BFF December 9, 2022 9 / 27

Key Observations & Ideas

In bitfield-manipulating programs:

Bit vectors have structure – we call them structured bit vectors (SBVs)

 Refinement types for SBVs
Developers know the structure

 User annotations for bitfields
Valid bitfield manipulations only use bit operations following restricted patterns

 Typing rules restricted to common bitfield manipulation patterns

Paul (MPI-SWS) BFF December 9, 2022 9 / 27

Key Observations & Ideas

In bitfield-manipulating programs:

Bit vectors have structure – we call them structured bit vectors (SBVs)

 Refinement types for SBVs
Developers know the structure

 User annotations for bitfields
Valid bitfield manipulations only use bit operations following restricted patterns

 Typing rules restricted to common bitfield manipulation patterns

Paul (MPI-SWS) BFF December 9, 2022 9 / 27

Our Approach

+ Refinement types for SBVs

+ User annotations for bitfields

+ Typing rules restricted to common
bitfield manipulation patterns

BFF: Foundational and automated verification for bitfield manipulation

Paul (MPI-SWS) BFF December 9, 2022 10 / 27

Let’s Verify is_writeable

bool is_writeable(uint8_t header) {
return (header & BIT(1)) != 0;

}

Paul (MPI-SWS) BFF December 9, 2022 11 / 27

Structures, Structures

This is in the user’s head:
01234567

unused owner execute write read

The user attaches the following annotation to the C code:

//@rc::bitfields FileInfo as u8
//@ read : bool[0]
//@ write : bool[1]
//@ execute : bool[2]
//@ owner : int[3..6]
//@rc::end

Paul (MPI-SWS) BFF December 9, 2022 12 / 27

Structures, Structures

This is in the user’s head:
01234567

unused owner execute write read

The user attaches the following annotation to the C code:

//@rc::bitfields FileInfo as u8
//@ read : bool[0]
//@ write : bool[1]
//@ execute : bool[2]
//@ owner : int[3..6]
//@rc::end

Paul (MPI-SWS) BFF December 9, 2022 12 / 27

Structures, Structures

This is in the user’s head:
01234567

unused owner execute write read

The user attaches the following annotation to the C code:

//@rc::bitfields FileInfo as u8
//@ read : bool[0]
//@ write : bool[1]
//@ execute : bool[2]
//@ owner : int[3..6]
//@rc::end

Paul (MPI-SWS) BFF December 9, 2022 12 / 27

Structures, Structures

This is in the user’s head:
01234567

unused owner execute write read

The user attaches the following annotation to the C code:

//@rc::bitfields FileInfo as u8
//@ read : bool[0]
//@ write : bool[1]
//@ execute : bool[2]
//@ owner : int[3..6]
//@rc::end

Paul (MPI-SWS) BFF December 9, 2022 12 / 27

Structures, Structures

This is in the user’s head:
01234567

unused owner execute write read

The user attaches the following annotation to the C code:

//@rc::bitfields FileInfo as u8
//@ read : bool[0]
//@ write : bool[1]
//@ execute : bool[2]
//@ owner : int[3..6]
//@rc::end

generates−−−−−→

Record FileInfo := {
read : bool;
write : bool;
execute : bool;
owner : Z

}.
(* and other auxiliary

definitions & lemmas *)

Paul (MPI-SWS) BFF December 9, 2022 13 / 27

Formal Specification via RefinedC Annotations

[[rc::parameters("h : FileInfo")]]
[[rc::args("h @ bitfield<FileInfo>")]]
[[rc::returns("{h.(write)} @ builtin_boolean")]]
bool is_writeable(uint8_t header) {
return (header & BIT(1)) != 0;

}

∀h : FileInfo, this function returns a Boolean value h.write.

Paul (MPI-SWS) BFF December 9, 2022 14 / 27

Formal Specification via RefinedC Annotations

[[rc::parameters("h : FileInfo")]]
[[rc::args("h @ bitfield<FileInfo>")]]
[[rc::returns("{h.(write)} @ builtin_boolean")]]
bool is_writeable(uint8_t header) {
return (header & BIT(1)) != 0;

}

rc::parameters: declare universal-quantified (Coq) variables.

Paul (MPI-SWS) BFF December 9, 2022 14 / 27

Formal Specification via RefinedC Annotations

[[rc::parameters("h : FileInfo")]]
[[rc::args("h @ bitfield<FileInfo>")]]
[[rc::returns("{h.(write)} @ builtin_boolean")]]
bool is_writeable(uint8_t header) {
return (header & BIT(1)) != 0;

}

rc::args: assign refinement types to input arguments.

Paul (MPI-SWS) BFF December 9, 2022 14 / 27

A New Refinement Type for SBVs

r @ bitfield⟨ R ⟩

parameter: a record type R

refinement: a record term r of type R

semantically represents an integer type JrK @ int⟨αR⟩

J·K : SBV→ Z

Paul (MPI-SWS) BFF December 9, 2022 15 / 27

A New Refinement Type for SBVs

r @ bitfield⟨R⟩

parameter: a record type R

refinement: a record term r of type R

semantically represents an integer type JrK @ int⟨αR⟩

J·K : SBV→ Z

Paul (MPI-SWS) BFF December 9, 2022 15 / 27

A New Refinement Type for SBVs

r @ bitfield⟨R⟩

parameter: a record type R

refinement: a record term r of type R

semantically represents an integer type JrK @ int⟨αR⟩

J·K : SBV→ Z

Paul (MPI-SWS) BFF December 9, 2022 15 / 27

A New Refinement Type for SBVs

r @ bitfield⟨R⟩

parameter: a record type R

refinement: a record term r of type R

semantically represents an integer type JrK @ int⟨αR⟩

J·K : SBV→ Z

Paul (MPI-SWS) BFF December 9, 2022 15 / 27

Formal Specification via RefinedC Annotations

[[rc::parameters("h : FileInfo")]]
[[rc::args("h @ bitfield<FileInfo>")]]
[[rc::returns("{h.(write)} @ builtin_boolean")]]
bool is_writeable(uint8_t header) {

return (header & BIT(1)) != 0;
}

Intuitively, let header = JhK.

Paul (MPI-SWS) BFF December 9, 2022 16 / 27

Formal Specification via RefinedC Annotations

[[rc::parameters("h : FileInfo")]]
[[rc::args("h @ bitfield<FileInfo>")]]
[[rc::returns("{h.(write)} @ builtin_boolean")]]
bool is_writeable(uint8_t header) {
return (header & BIT(1)) != 0;

}

rc::returns: assign a refinement type to the return value.

Now, BFF takes over the verification (automatically for this example).

Paul (MPI-SWS) BFF December 9, 2022 16 / 27

Formal Specification via RefinedC Annotations

[[rc::parameters("h : FileInfo")]]
[[rc::args("h @ bitfield<FileInfo>")]]
[[rc::returns("{h.(write)} @ builtin_boolean")]]
bool is_writeable(uint8_t header) {
return (header & BIT(1)) != 0;

}

rc::returns: assign a refinement type to the return value.

Now, BFF takes over the verification (automatically for this example).

Paul (MPI-SWS) BFF December 9, 2022 16 / 27

A Template for Typing Rules

e1 ▷e r1 @ bitfield⟨R⟩ e2 ▷e r2 @ bitfield⟨R⟩ ?P

(e1 op e2) ▷e ?r @ bitfield⟨R⟩

where

e ▷e τ : type judgment on C-expressions

op ∈ {&, |, ~, <<, >>}

?P: additional restriction of bitfield manipulation

?r : the resulting SBV s.t.
J?rK = JopK(Je1K, Je2K)

computed without any bitwise operators anymore

Paul (MPI-SWS) BFF December 9, 2022 17 / 27

A Template for Typing Rules

e1 ▷e r1 @ bitfield⟨R⟩ e2 ▷e r2 @ bitfield⟨R⟩ ?P

(e1 op e2) ▷e ?r @ bitfield⟨R⟩

where

e ▷e τ : type judgment on C-expressions

op ∈ {&, |, ~, <<, >>}
?P: additional restriction of bitfield manipulation

?r : the resulting SBV s.t.
J?rK = JopK(Je1K, Je2K)

computed without any bitwise operators anymore

Paul (MPI-SWS) BFF December 9, 2022 17 / 27

A Template for Typing Rules

e1 ▷e r1 @ bitfield⟨R⟩ e2 ▷e r2 @ bitfield⟨R⟩ ?P

(e1 op e2) ▷e ?r @ bitfield⟨R⟩

where

e ▷e τ : type judgment on C-expressions

op ∈ {&, |, ~, <<, >>}
?P: additional restriction of bitfield manipulation

?r : the resulting SBV s.t.
J?rK = JopK(Je1K, Je2K)

computed without any bitwise operators anymore

Paul (MPI-SWS) BFF December 9, 2022 17 / 27

A Template for Typing Rules

e1 ▷e r1 @ bitfield⟨R⟩ e2 ▷e r2 @ bitfield⟨R⟩ ?P

(e1 op e2) ▷e ?r @ bitfield⟨R⟩

where

e ▷e τ : type judgment on C-expressions

op ∈ {&, |, ~, <<, >>}
?P: additional restriction of bitfield manipulation

?r : the resulting SBV s.t.
J?rK = JopK(Je1K, Je2K)

computed without any bitwise operators anymore

Paul (MPI-SWS) BFF December 9, 2022 17 / 27

Masking Bitfields via Bitwise-AND

e1 ▷e r1 @ bitfield⟨R⟩ e2 ▷e r2 @ bitfield⟨R⟩ is_mask(r2)

(e1 & e2) ▷e (r1↘ r2) @ bitfield⟨R⟩

The rhs is a mask, where is_mask(r) iff:
for every field f of r , the value of f is either all-zero or all-one

header & BIT(1)
01234567

0 xxxx x w x header

0 0000 0 1 0 BIT(1)&

0 0000 0 w 0

Paul (MPI-SWS) BFF December 9, 2022 18 / 27

Masking Bitfields via Bitwise-AND

e1 ▷e r1 @ bitfield⟨R⟩ e2 ▷e r2 @ bitfield⟨R⟩ is_mask(r2)

(e1 & e2) ▷e (r1↘ r2) @ bitfield⟨R⟩

Partially define an extraction operation r1↘ r2 if is_mask(r2):
extract from r1 the bitfields specified by r2.

Lemma
If is_mask(r2), then Jr1↘ r2K = Jr1K & Jr2K.

No bit operations required in the definition of ↘!

header & BIT(1)
01234567

0 xxxx x w x header

0 0000 0 1 0 BIT(1)&

0 0000 0 w 0

Paul (MPI-SWS) BFF December 9, 2022 18 / 27

Masking Bitfields via Bitwise-AND

e1 ▷e r1 @ bitfield⟨R⟩ e2 ▷e r2 @ bitfield⟨R⟩ is_mask(r2)

(e1 & e2) ▷e (r1↘ r2) @ bitfield⟨R⟩

Partially define an extraction operation r1↘ r2 if is_mask(r2):
extract from r1 the bitfields specified by r2.

Lemma
If is_mask(r2), then Jr1↘ r2K = Jr1K & Jr2K.

No bit operations required in the definition of ↘!

header & BIT(1)
01234567

0 xxxx x w x header

0 0000 0 1 0 BIT(1)&

0 0000 0 w 0

Paul (MPI-SWS) BFF December 9, 2022 18 / 27

Masking Bitfields via Bitwise-AND

e1 ▷e r1 @ bitfield⟨R⟩ e2 ▷e r2 @ bitfield⟨R⟩ is_mask(r2)

(e1 & e2) ▷e (r1↘ r2) @ bitfield⟨R⟩

Partially define an extraction operation r1↘ r2 if is_mask(r2):
extract from r1 the bitfields specified by r2.

Lemma
If is_mask(r2), then Jr1↘ r2K = Jr1K & Jr2K.

No bit operations required in the definition of ↘!

header & BIT(1)
01234567

0 xxxx x w x header

0 0000 0 1 0 BIT(1)&

0 0000 0 w 0

Paul (MPI-SWS) BFF December 9, 2022 18 / 27

Masking Bitfields via Bitwise-AND

e1 ▷e r1 @ bitfield⟨R⟩ e2 ▷e r2 @ bitfield⟨R⟩ is_mask(r2)

(e1 & e2) ▷e (r1↘ r2) @ bitfield⟨R⟩

header & BIT(1)
01234567

0 xxxx x w x header

0 0000 0 1 0 BIT(1)&

0 0000 0 w 0

Paul (MPI-SWS) BFF December 9, 2022 18 / 27

Masking Bitfields via Bitwise-AND

e1 ▷e r1 @ bitfield⟨R⟩ e2 ▷e r2 @ bitfield⟨R⟩ ((((((is_mask(r2)

(e1 & e2) ▷e (r1↘ r2) @ bitfield⟨R⟩

header & BIT(1)
01234567

0 xxxx x w x header

0 0000 0 1 0 BIT(1)&

0 0000 0 w 0

Paul (MPI-SWS) BFF December 9, 2022 18 / 27

Programmers Can Make Mistakes

The user expects to extract the owner field,

header & GENMASK(5,3)
01234567

0 a1a2a3a4 x x x header

0 0111 0 0 0 GENMASK(5,3)&

0 0a2a3a4 x x x

but this expression does incomplete extraction.

Paul (MPI-SWS) BFF December 9, 2022 19 / 27

Merging Bitfields via Bitwise-OR

e1 ▷e r1 @ bitfield⟨R⟩ e2 ▷e r2 @ bitfield⟨R⟩ r1 ## r2

(e1 | e2) ▷e (r1 ∪ r2) @ bitfield⟨R⟩

The bitfields specified in the two SBVs must be disjoint.

owner | perm
01234567

0 a1a2a3a4 0 0 0 owner

0 0000 0 1 1 perm|

0 a1a2a3a4 0 1 1

Paul (MPI-SWS) BFF December 9, 2022 20 / 27

Merging Bitfields via Bitwise-OR

e1 ▷e r1 @ bitfield⟨R⟩ e2 ▷e r2 @ bitfield⟨R⟩ r1 ## r2

(e1 | e2) ▷e (r1 ∪ r2) @ bitfield⟨R⟩

Partially define a merging operation r1 ∪ r2 if r1 ## r2:
merge (take the union of) the specified bitfields.

Lemma
If r1 ## r2, then Jr1 ∪ r2K = Jr1K | Jr2K.

No bit operations required in the definition of ∪!

owner | perm
01234567

0 a1a2a3a4 0 0 0 owner

0 0000 0 1 1 perm|

0 a1a2a3a4 0 1 1

Paul (MPI-SWS) BFF December 9, 2022 20 / 27

Merging Bitfields via Bitwise-OR

e1 ▷e r1 @ bitfield⟨R⟩ e2 ▷e r2 @ bitfield⟨R⟩ r1 ## r2
(e1 | e2) ▷e (r1 ∪ r2) @ bitfield⟨R⟩

owner | perm
01234567

0 a1a2a3a4 0 0 0 owner

0 0000 0 1 1 perm|

0 a1a2a3a4 0 1 1

Paul (MPI-SWS) BFF December 9, 2022 20 / 27

A More Complicated Example

The above rules apply to the function taken from PKVM page table entry code:

void set_valid_leaf_pte(pte_t *ptep, u64 pa, pte_t attr) {
pte_t pte = pa & PTE_ADDR_MASK;
pte |= attr & (PTE_LEAF_ATTR_LO | PTE_LEAF_ATTR_HI);
pte |= PTE_VALID;
*ptep = pte;

}

○ See §2 of our paper

Paul (MPI-SWS) BFF December 9, 2022 22 / 27

More Typing Rules

In addition to masking & merging bitfields:

Setting bitfields via |

Clearing bitfields via ~ and &

Reading bitfield values via >>

Loading bitfield values via <<

○ See §3 of our paper

Paul (MPI-SWS) BFF December 9, 2022 23 / 27

Case Studies

Codebase Lines of annotation/code
Side conditions

manual total

#1 pgtable 0.83 0 75
#2 x86_pgtable 0.64 0 17
#3 tcp_input 0.79 0 0
#4 mt7601u 0.26 3 63

Total 0.42 3 155

Mostly automated; reasonable amount of annotations

○ See §7 of our paper

Paul (MPI-SWS) BFF December 9, 2022 24 / 27

Technical Issue on Implementing Typing Rules

e1 ▷e r1 @ bitfield⟨R⟩ e2 ▷e r2 @ bitfield⟨R⟩ is_mask(r2)

(e1 & e2) ▷e (r1↘ r2) @ bitfield⟨R⟩

Issue: since R is generic (user-defined), operators such as

↘ : ∀(R : Type),R → R → R

are hard to implement in Coq.

Paul (MPI-SWS) BFF December 9, 2022 25 / 27

Technical Issue on Implementing Typing Rules

e1 ▷e r1 @ bitfield⟨R⟩ e2 ▷e r2 @ bitfield⟨R⟩ is_mask(r2)

(e1 & e2) ▷e (r1↘ r2) @ bitfield⟨R⟩

Issue: since R is generic (user-defined), operators such as

↘ : ∀(R : Type),R → R → R

are hard to implement in Coq.

Paul (MPI-SWS) BFF December 9, 2022 25 / 27

Solution: A New Type Refined by Terms

t @ bfterm⟨ σ ⟩

parameter: a signature σ

//@rc::bitfields FileInfo as u8
//@ read : bool[0]
//@ write : bool[1]
//@ execute : bool[2]
//@ owner : int[3..6]
//@rc::end

generates−−−−−→

σFileInfo ≜
[⟨0, 1⟩, ⟨1, 1⟩, ⟨2, 1⟩, ⟨3, 4⟩]

(range format: ⟨offset,width⟩)

Paul (MPI-SWS) BFF December 9, 2022 26 / 27

Solution: A New Type Refined by Terms

t @ bfterm⟨σ⟩

parameter: a signature σ

refinement: a term t of sort σ

Definition header : FileInfo :=
{| read := r; write := w; execute := x; owner := o |}.

represented by−−−−−−−−→
theader ≜ [⟨0, 1⟩ 7→ r , ⟨1, 1⟩ 7→ w , ⟨2, 1⟩ 7→ x , ⟨3, 4⟩ 7→ o] : σFileInfo

Paul (MPI-SWS) BFF December 9, 2022 26 / 27

Solution: A New Type Refined by Terms

t @ bfterm⟨σ⟩

parameter: a signature σ

refinement: a term t of sort σ

translation rule: r @ bitfield⟨R⟩ desugar to−−−−−−→ tr @ bfterm⟨σR⟩

The typing rule used in verification:

e1 ▷e t1 @ bfterm⟨σ⟩ e2 ▷e t2 @ bfterm⟨σ⟩ is_mask(t2)

(e1 & e2) ▷e (t1↘ t2) @ bfterm⟨σ⟩

Paul (MPI-SWS) BFF December 9, 2022 26 / 27

Solution: A New Type Refined by Terms

t @ bfterm⟨σ⟩

parameter: a signature σ

refinement: a term t of sort σ

translation rule: r @ bitfield⟨R⟩ desugar to−−−−−−→ tr @ bfterm⟨σR⟩

The typing rule used in verification:

e1 ▷e t1 @ bfterm⟨σ⟩ e2 ▷e t2 @ bfterm⟨σ⟩ is_mask(t2)

(e1 & e2) ▷e (t1↘ t2) @ bfterm⟨σ⟩

Paul (MPI-SWS) BFF December 9, 2022 26 / 27

Solution: A New Type Refined by Terms

t @ bfterm⟨σ⟩

parameter: a signature σ

refinement: a term t of sort σ

translation rule: r @ bitfield⟨R⟩ desugar to−−−−−−→ tr @ bfterm⟨σR⟩

The typing rule used in verification:

e1 ▷e t1 @ bfterm⟨σ⟩ e2 ▷e t2 @ bfterm⟨σ⟩ is_mask(t2)

(e1 & e2) ▷e (t1↘ t2) @ bfterm⟨σ⟩

Paul (MPI-SWS) BFF December 9, 2022 26 / 27

Summary

Key Insight: typical bitfield manipulation operates on the logical, high-level structure of
fields that are packed into integers/SBVs.

Implementation in RefinedC: new types for SBVs, typing rules with soundness proofs,
meta-theory of SBV terms.

Our webpage:

https://plv.mpi-sws.org/refinedc/bff

Paul (MPI-SWS) BFF December 9, 2022 27 / 27

https://plv.mpi-sws.org/refinedc/bff

	Introduction
	How Can I use BFF
	Typing Rules

