
BFF: Foundational and Automated Verification of
Bitfield-Manipulating Programs

Fengmin (Paul) Zhu Michael Sammler Rodolphe Lepigre
Derek Dreyer Deepak Garg

Max Planck Institute for Software Systems

December 9, 2022

Paul (MPI-SWS) BFF December 9, 2022 1 / 27

Bit Operations Are Used to ...

Perform efficient arithmetic computation

Realize cryptography algorithms

Bitfield Manipulation: manipulate the bitfields packed in integers,
e.g., network packet headers, page table entries

Paul (MPI-SWS) BFF December 9, 2022 2 / 27

Bit Operations Are Used to ...

Perform efficient arithmetic computation

Realize cryptography algorithms

Bitfield Manipulation: manipulate the bitfields packed in integers,
e.g., network packet headers, page table entries

Paul (MPI-SWS) BFF December 9, 2022 2 / 27

Bit Operations Are Used to ...

Perform efficient arithmetic computation

Realize cryptography algorithms

Bitfield Manipulation: manipulate the bitfields packed in integers,
e.g., network packet headers, page table entries

Paul (MPI-SWS) BFF December 9, 2022 2 / 27

Bitfield Manipulation: An Example

01234567

unused owner execute write read

Figure: A u8-integer encoding the metadata of a file header.

Paul (MPI-SWS) BFF December 9, 2022 3 / 27

Bitfield Manipulation: An Example

01234567

unused owner execute write read

Figure: A u8-integer encoding the metadata of a file header.

Paul (MPI-SWS) BFF December 9, 2022 3 / 27

Bitfield Manipulation: An Example

01234567

unused owner execute write read

Figure: A u8-integer encoding the metadata of a file header.

Paul (MPI-SWS) BFF December 9, 2022 3 / 27

Bitfield Manipulation: An Example

01234567

unused owner execute write read

Figure: A u8-integer encoding the metadata of a file header.

Paul (MPI-SWS) BFF December 9, 2022 3 / 27

Bitfield Manipulation: An Example

01234567

unused owner execute write read

Figure: A u8-integer encoding the metadata of a file header.

Paul (MPI-SWS) BFF December 9, 2022 3 / 27

Bitfield Manipulation: An Example

01234567

unused owner execute write read

Figure: A u8-integer encoding the metadata of a file header.

#include <linux/bitops.h> // BIT macro
bool is_writeable(uint8_t header) {

return (header & BIT(1)) != 0; // BIT(1) = 0b10
}

Paul (MPI-SWS) BFF December 9, 2022 3 / 27

Bitfield Manipulation: An Example

01234567

unused owner execute write read

Figure: A u8-integer encoding the metadata of a file header.

#include <linux/bitops.h> // BIT macro
bool is_writeable(uint8_t header) {

return (header & BIT(1)) != 0; // BIT(1) = 0b10
}

Paul (MPI-SWS) BFF December 9, 2022 3 / 27

Bitfield Manipulation is Everywhere in Systems Programming

Page tables

Memory allocators

Network protocols

Device drivers

...

Linux kernel

Bitfield manipulation
(&, |, ~, <<, >>)

Paul (MPI-SWS) BFF December 9, 2022 4 / 27

Bitfield Manipulation is Everywhere in Systems Programming

Page tables

Memory allocators

Network protocols

Device drivers

...

Linux kernel

Bitfield manipulation
(&, |, ~, <<, >>)

Paul (MPI-SWS) BFF December 9, 2022 4 / 27

Bitfield Manipulation is Everywhere in Systems Programming

Page tables

Memory allocators

Network protocols

Device drivers

...

Linux kernel

Bitfield manipulation
(&, |, ~, <<, >>)

Paul (MPI-SWS) BFF December 9, 2022 4 / 27

Two Goals, Simultaneously

Foundational

Automated

Paul (MPI-SWS) BFF December 9, 2022 5 / 27

Two Goals, Simultaneously

Foundational

Automated

Proofs are machine-checkable in proof assistants

Paul (MPI-SWS) BFF December 9, 2022 5 / 27

Two Goals, Simultaneously

Foundational

Automated

Proofs are machine-checkable in proof assistants

Proofs are mostly inferred

Paul (MPI-SWS) BFF December 9, 2022 5 / 27

Our Starting Point: RefinedC

Automating the foundational verification of
C code with refined ownership types
[Sammler et al., PLDI 2021]

+ Bitfield manipulation support
(our work)

Paul (MPI-SWS) BFF December 9, 2022 6 / 27

Our Starting Point: RefinedC

Automating the foundational verification of
C code with refined ownership types
[Sammler et al., PLDI 2021]

+ Bitfield manipulation support
(our work)

Paul (MPI-SWS) BFF December 9, 2022 6 / 27

Refinement Types in RefinedC

r @ tyConstr⟨T1,T2, . . .⟩

Builtin-types:

Integer type n @ int⟨α⟩
Boolean type b @ bool
Ownership type l @ &own⟨τ⟩
. . .

Types are semantically defined (in Iris separation logic).

Typing rules are propositions and their soundness has been proven in Coq-Iris.

Paul (MPI-SWS) BFF December 9, 2022 7 / 27

Refinement Types in RefinedC

r @ tyConstr⟨T1,T2, . . .⟩

Builtin-types:

Integer type n @ int⟨α⟩
Boolean type b @ bool
Ownership type l @ &own⟨τ⟩
. . .

Types are semantically defined (in Iris separation logic).

Typing rules are propositions and their soundness has been proven in Coq-Iris.

Paul (MPI-SWS) BFF December 9, 2022 7 / 27

Refinement Types in RefinedC

r @ tyConstr⟨T1,T2, . . .⟩

Builtin-types:

Integer type n @ int⟨α⟩
Boolean type b @ bool
Ownership type l @ &own⟨τ⟩
. . .

Types are semantically defined (in Iris separation logic).

Typing rules are propositions and their soundness has been proven in Coq-Iris.

Paul (MPI-SWS) BFF December 9, 2022 7 / 27

Refinement Types in RefinedC

r @ tyConstr⟨T1,T2, . . .⟩

Builtin-types:

Integer type n @ int⟨α⟩
Boolean type b @ bool
Ownership type l @ &own⟨τ⟩
. . .

{n} where n ∈ N and n ∈ α (α ∈ {i32, u16, . . .})

Types are semantically defined (in Iris separation logic).

Typing rules are propositions and their soundness has been proven in Coq-Iris.

Paul (MPI-SWS) BFF December 9, 2022 7 / 27

Refinement Types in RefinedC

r @ tyConstr⟨T1,T2, . . .⟩

Builtin-types:

Integer type n @ int⟨α⟩
Boolean type b @ bool
Ownership type l @ &own⟨τ⟩
. . .

{b} where b ∈ B

Types are semantically defined (in Iris separation logic).

Typing rules are propositions and their soundness has been proven in Coq-Iris.

Paul (MPI-SWS) BFF December 9, 2022 7 / 27

Refinement Types in RefinedC

r @ tyConstr⟨T1,T2, . . .⟩

Builtin-types:

Integer type n @ int⟨α⟩
Boolean type b @ bool
Ownership type l @ &own⟨τ⟩
. . .

{l} where the location l 7→ v for some v of type τ

Types are semantically defined (in Iris separation logic).

Typing rules are propositions and their soundness has been proven in Coq-Iris.

Paul (MPI-SWS) BFF December 9, 2022 7 / 27

Refinement Types in RefinedC

r @ tyConstr⟨T1,T2, . . .⟩

Builtin-types:

Integer type n @ int⟨α⟩
Boolean type b @ bool
Ownership type l @ &own⟨τ⟩
. . .

Types are semantically defined (in Iris separation logic).

Typing rules are propositions and their soundness has been proven in Coq-Iris.

Paul (MPI-SWS) BFF December 9, 2022 7 / 27

Refinement Types in RefinedC

r @ tyConstr⟨T1,T2, . . .⟩

Builtin-types:

Integer type n @ int⟨α⟩
Boolean type b @ bool
Ownership type l @ &own⟨τ⟩
. . .

Types are semantically defined (in Iris separation logic).

Typing rules are propositions and their soundness has been proven in Coq-Iris.

Paul (MPI-SWS) BFF December 9, 2022 7 / 27

Refinement Types in RefinedC

r @ tyConstr⟨T1,T2, . . .⟩

Builtin-types:

Integer type n @ int⟨α⟩
Boolean type b @ bool
Ownership type l @ &own⟨τ⟩
. . .

Types are semantically defined (in Iris separation logic).

Typing rules are propositions and their soundness has been proven in Coq-Iris.

Paul (MPI-SWS) BFF December 9, 2022 7 / 27

Naive Approach: Reuse Integer Types & Typing Rules in RefinedC

Q: How to automatically discharge the proof obligations in bit vector theory?

A: SMT solvers with a bit vector decision procedure.

Q: Can we do “RefinedC + SMT solver”?

A1: Hard because SMT solvers are not foundational1

A2: Not ideal because bit vector theory is too big a hammer for verifying bitfield
manipulation (only a fragment is needed)

1Studies show the presence of bugs [Mansur et al., FSE 2020, Winterer et al., PLDI 2020]
Paul (MPI-SWS) BFF December 9, 2022 8 / 27

Naive Approach: Reuse Integer Types & Typing Rules in RefinedC

Q: How to automatically discharge the proof obligations in bit vector theory?

A: SMT solvers with a bit vector decision procedure.

Q: Can we do “RefinedC + SMT solver”?

A1: Hard because SMT solvers are not foundational1

A2: Not ideal because bit vector theory is too big a hammer for verifying bitfield
manipulation (only a fragment is needed)

1Studies show the presence of bugs [Mansur et al., FSE 2020, Winterer et al., PLDI 2020]
Paul (MPI-SWS) BFF December 9, 2022 8 / 27

Naive Approach: Reuse Integer Types & Typing Rules in RefinedC

Q: How to automatically discharge the proof obligations in bit vector theory?

A: SMT solvers with a bit vector decision procedure.

Q: Can we do “RefinedC + SMT solver”?

A1: Hard because SMT solvers are not foundational1

A2: Not ideal because bit vector theory is too big a hammer for verifying bitfield
manipulation (only a fragment is needed)

1Studies show the presence of bugs [Mansur et al., FSE 2020, Winterer et al., PLDI 2020]
Paul (MPI-SWS) BFF December 9, 2022 8 / 27

Key Observations & Ideas

In bitfield-manipulating programs:

Bit vectors have structure – we call them structured bit vectors (SBVs)

� Refinement types for SBVs
Developers know the structure

� User annotations for bitfields
Valid bitfield manipulations only use bit operations following restricted patterns

� Typing rules restricted to common bitfield manipulation patterns

Paul (MPI-SWS) BFF December 9, 2022 9 / 27

Key Observations & Ideas

In bitfield-manipulating programs:

Bit vectors have structure – we call them structured bit vectors (SBVs)

� Refinement types for SBVs
Developers know the structure

� User annotations for bitfields
Valid bitfield manipulations only use bit operations following restricted patterns

� Typing rules restricted to common bitfield manipulation patterns

Paul (MPI-SWS) BFF December 9, 2022 9 / 27

Key Observations & Ideas

In bitfield-manipulating programs:

Bit vectors have structure – we call them structured bit vectors (SBVs)

� Refinement types for SBVs

Developers know the structure

� User annotations for bitfields
Valid bitfield manipulations only use bit operations following restricted patterns

� Typing rules restricted to common bitfield manipulation patterns

Paul (MPI-SWS) BFF December 9, 2022 9 / 27

Key Observations & Ideas

In bitfield-manipulating programs:

Bit vectors have structure – we call them structured bit vectors (SBVs)

� Refinement types for SBVs

Developers know the structure

� User annotations for bitfields

Valid bitfield manipulations only use bit operations following restricted patterns

� Typing rules restricted to common bitfield manipulation patterns

Paul (MPI-SWS) BFF December 9, 2022 9 / 27

Key Observations & Ideas

In bitfield-manipulating programs:

Bit vectors have structure – we call them structured bit vectors (SBVs)

� Refinement types for SBVs
Developers know the structure

� User annotations for bitfields

Valid bitfield manipulations only use bit operations following restricted patterns

� Typing rules restricted to common bitfield manipulation patterns

Paul (MPI-SWS) BFF December 9, 2022 9 / 27

Key Observations & Ideas

In bitfield-manipulating programs:

Bit vectors have structure – we call them structured bit vectors (SBVs)

� Refinement types for SBVs
Developers know the structure

� User annotations for bitfields
Valid bitfield manipulations only use bit operations following restricted patterns

� Typing rules restricted to common bitfield manipulation patterns

Paul (MPI-SWS) BFF December 9, 2022 9 / 27

Key Observations & Ideas

In bitfield-manipulating programs:

Bit vectors have structure – we call them structured bit vectors (SBVs)

� Refinement types for SBVs
Developers know the structure

� User annotations for bitfields
Valid bitfield manipulations only use bit operations following restricted patterns

� Typing rules restricted to common bitfield manipulation patterns

Paul (MPI-SWS) BFF December 9, 2022 9 / 27

Key Observations & Ideas

In bitfield-manipulating programs:

Bit vectors have structure – we call them structured bit vectors (SBVs)

� Refinement types for SBVs
Developers know the structure

� User annotations for bitfields
Valid bitfield manipulations only use bit operations following restricted patterns

� Typing rules restricted to common bitfield manipulation patterns

Paul (MPI-SWS) BFF December 9, 2022 9 / 27

Our Approach

+ Refinement types for SBVs

+ User annotations for bitfields

+ Typing rules restricted to common
bitfield manipulation patterns

BFF: Foundational and automated verification for bitfield manipulation

Paul (MPI-SWS) BFF December 9, 2022 10 / 27

Let’s Verify is_writeable

bool is_writeable(uint8_t header) {
return (header & BIT(1)) != 0;

}

Paul (MPI-SWS) BFF December 9, 2022 11 / 27

Structures, Structures

This is in the user’s head:
01234567

unused owner execute write read

The user attaches the following annotation to the C code:

//@rc::bitfields FileInfo as u8
//@ read : bool[0]
//@ write : bool[1]
//@ execute : bool[2]
//@ owner : int[3..6]
//@rc::end

Paul (MPI-SWS) BFF December 9, 2022 12 / 27

Structures, Structures

This is in the user’s head:
01234567

unused owner execute write read

The user attaches the following annotation to the C code:

//@rc::bitfields FileInfo as u8
//@ read : bool[0]
//@ write : bool[1]
//@ execute : bool[2]
//@ owner : int[3..6]
//@rc::end

Paul (MPI-SWS) BFF December 9, 2022 12 / 27

Structures, Structures

This is in the user’s head:
01234567

unused owner execute write read

The user attaches the following annotation to the C code:

//@rc::bitfields FileInfo as u8
//@ read : bool[0]
//@ write : bool[1]
//@ execute : bool[2]
//@ owner : int[3..6]
//@rc::end

Paul (MPI-SWS) BFF December 9, 2022 12 / 27

Structures, Structures

This is in the user’s head:
01234567

unused owner execute write read

The user attaches the following annotation to the C code:

//@rc::bitfields FileInfo as u8
//@ read : bool[0]
//@ write : bool[1]
//@ execute : bool[2]
//@ owner : int[3..6]
//@rc::end

Paul (MPI-SWS) BFF December 9, 2022 12 / 27

Structures, Structures

This is in the user’s head:
01234567

unused owner execute write read

The user attaches the following annotation to the C code:

//@rc::bitfields FileInfo as u8
//@ read : bool[0]
//@ write : bool[1]
//@ execute : bool[2]
//@ owner : int[3..6]
//@rc::end

generates−−−−−→

Record FileInfo := {
read : bool;
write : bool;
execute : bool;
owner : Z

}.
(* and other auxiliary

definitions & lemmas *)

Paul (MPI-SWS) BFF December 9, 2022 13 / 27

Formal Specification via RefinedC Annotations

[[rc::parameters("h : FileInfo")]]
[[rc::args("h @ bitfield<FileInfo>")]]
[[rc::returns("{h.(write)} @ builtin_boolean")]]
bool is_writeable(uint8_t header) {
return (header & BIT(1)) != 0;

}

∀h : FileInfo, this function returns a Boolean value h.write.

Paul (MPI-SWS) BFF December 9, 2022 14 / 27

Formal Specification via RefinedC Annotations

[[rc::parameters("h : FileInfo")]]
[[rc::args("h @ bitfield<FileInfo>")]]
[[rc::returns("{h.(write)} @ builtin_boolean")]]
bool is_writeable(uint8_t header) {
return (header & BIT(1)) != 0;

}

rc::parameters: declare universal-quantified (Coq) variables.

Paul (MPI-SWS) BFF December 9, 2022 14 / 27

Formal Specification via RefinedC Annotations

[[rc::parameters("h : FileInfo")]]
[[rc::args("h @ bitfield<FileInfo>")]]
[[rc::returns("{h.(write)} @ builtin_boolean")]]
bool is_writeable(uint8_t header) {
return (header & BIT(1)) != 0;

}

rc::args: assign refinement types to input arguments.

Paul (MPI-SWS) BFF December 9, 2022 14 / 27

A New Refinement Type for SBVs

r @ bitfield⟨ R ⟩

parameter: a record type R

refinement: a record term r of type R

semantically represents an integer type JrK @ int⟨αR⟩

J·K : SBV→ Z

Paul (MPI-SWS) BFF December 9, 2022 15 / 27

A New Refinement Type for SBVs

r @ bitfield⟨R⟩

parameter: a record type R

refinement: a record term r of type R

semantically represents an integer type JrK @ int⟨αR⟩

J·K : SBV→ Z

Paul (MPI-SWS) BFF December 9, 2022 15 / 27

A New Refinement Type for SBVs

r @ bitfield⟨R⟩

parameter: a record type R

refinement: a record term r of type R

semantically represents an integer type JrK @ int⟨αR⟩

J·K : SBV→ Z

Paul (MPI-SWS) BFF December 9, 2022 15 / 27

A New Refinement Type for SBVs

r @ bitfield⟨R⟩

parameter: a record type R

refinement: a record term r of type R

semantically represents an integer type JrK @ int⟨αR⟩

J·K : SBV→ Z

Paul (MPI-SWS) BFF December 9, 2022 15 / 27

Formal Specification via RefinedC Annotations

[[rc::parameters("h : FileInfo")]]
[[rc::args("h @ bitfield<FileInfo>")]]
[[rc::returns("{h.(write)} @ builtin_boolean")]]
bool is_writeable(uint8_t header) {

return (header & BIT(1)) != 0;
}

Intuitively, let header = JhK.

Paul (MPI-SWS) BFF December 9, 2022 16 / 27

Formal Specification via RefinedC Annotations

[[rc::parameters("h : FileInfo")]]
[[rc::args("h @ bitfield<FileInfo>")]]
[[rc::returns("{h.(write)} @ builtin_boolean")]]
bool is_writeable(uint8_t header) {
return (header & BIT(1)) != 0;

}

rc::returns: assign a refinement type to the return value.

Now, BFF takes over the verification (automatically for this example).

Paul (MPI-SWS) BFF December 9, 2022 16 / 27

Formal Specification via RefinedC Annotations

[[rc::parameters("h : FileInfo")]]
[[rc::args("h @ bitfield<FileInfo>")]]
[[rc::returns("{h.(write)} @ builtin_boolean")]]
bool is_writeable(uint8_t header) {
return (header & BIT(1)) != 0;

}

rc::returns: assign a refinement type to the return value.

Now, BFF takes over the verification (automatically for this example).

Paul (MPI-SWS) BFF December 9, 2022 16 / 27

A Template for Typing Rules

e1 ▷e r1 @ bitfield⟨R⟩ e2 ▷e r2 @ bitfield⟨R⟩ ?P

(e1 op e2) ▷e ?r @ bitfield⟨R⟩

where

e ▷e τ : type judgment on C-expressions

op ∈ {&, |, ~, <<, >>}

?P: additional restriction of bitfield manipulation

?r : the resulting SBV s.t.
J?rK = JopK(Je1K, Je2K)

computed without any bitwise operators anymore

Paul (MPI-SWS) BFF December 9, 2022 17 / 27

A Template for Typing Rules

e1 ▷e r1 @ bitfield⟨R⟩ e2 ▷e r2 @ bitfield⟨R⟩ ?P

(e1 op e2) ▷e ?r @ bitfield⟨R⟩

where

e ▷e τ : type judgment on C-expressions

op ∈ {&, |, ~, <<, >>}
?P: additional restriction of bitfield manipulation

?r : the resulting SBV s.t.
J?rK = JopK(Je1K, Je2K)

computed without any bitwise operators anymore

Paul (MPI-SWS) BFF December 9, 2022 17 / 27

A Template for Typing Rules

e1 ▷e r1 @ bitfield⟨R⟩ e2 ▷e r2 @ bitfield⟨R⟩ ?P

(e1 op e2) ▷e ?r @ bitfield⟨R⟩

where

e ▷e τ : type judgment on C-expressions

op ∈ {&, |, ~, <<, >>}
?P: additional restriction of bitfield manipulation

?r : the resulting SBV s.t.
J?rK = JopK(Je1K, Je2K)

computed without any bitwise operators anymore

Paul (MPI-SWS) BFF December 9, 2022 17 / 27

A Template for Typing Rules

e1 ▷e r1 @ bitfield⟨R⟩ e2 ▷e r2 @ bitfield⟨R⟩ ?P

(e1 op e2) ▷e ?r @ bitfield⟨R⟩

where

e ▷e τ : type judgment on C-expressions

op ∈ {&, |, ~, <<, >>}
?P: additional restriction of bitfield manipulation

?r : the resulting SBV s.t.
J?rK = JopK(Je1K, Je2K)

computed without any bitwise operators anymore

Paul (MPI-SWS) BFF December 9, 2022 17 / 27

Masking Bitfields via Bitwise-AND

e1 ▷e r1 @ bitfield⟨R⟩ e2 ▷e r2 @ bitfield⟨R⟩ is_mask(r2)

(e1 & e2) ▷e (r1↘ r2) @ bitfield⟨R⟩

The rhs is a mask, where is_mask(r) iff:
for every field f of r , the value of f is either all-zero or all-one

header & BIT(1)
01234567

0 xxxx x w x header

0 0000 0 1 0 BIT(1)&

0 0000 0 w 0

Paul (MPI-SWS) BFF December 9, 2022 18 / 27

Masking Bitfields via Bitwise-AND

e1 ▷e r1 @ bitfield⟨R⟩ e2 ▷e r2 @ bitfield⟨R⟩ is_mask(r2)

(e1 & e2) ▷e (r1↘ r2) @ bitfield⟨R⟩

Partially define an extraction operation r1↘ r2 if is_mask(r2):
extract from r1 the bitfields specified by r2.

Lemma
If is_mask(r2), then Jr1↘ r2K = Jr1K & Jr2K.

No bit operations required in the definition of ↘!

header & BIT(1)
01234567

0 xxxx x w x header

0 0000 0 1 0 BIT(1)&

0 0000 0 w 0

Paul (MPI-SWS) BFF December 9, 2022 18 / 27

Masking Bitfields via Bitwise-AND

e1 ▷e r1 @ bitfield⟨R⟩ e2 ▷e r2 @ bitfield⟨R⟩ is_mask(r2)

(e1 & e2) ▷e (r1↘ r2) @ bitfield⟨R⟩

Partially define an extraction operation r1↘ r2 if is_mask(r2):
extract from r1 the bitfields specified by r2.

Lemma
If is_mask(r2), then Jr1↘ r2K = Jr1K & Jr2K.

No bit operations required in the definition of ↘!

header & BIT(1)
01234567

0 xxxx x w x header

0 0000 0 1 0 BIT(1)&

0 0000 0 w 0

Paul (MPI-SWS) BFF December 9, 2022 18 / 27

Masking Bitfields via Bitwise-AND

e1 ▷e r1 @ bitfield⟨R⟩ e2 ▷e r2 @ bitfield⟨R⟩ is_mask(r2)

(e1 & e2) ▷e (r1↘ r2) @ bitfield⟨R⟩

Partially define an extraction operation r1↘ r2 if is_mask(r2):
extract from r1 the bitfields specified by r2.

Lemma
If is_mask(r2), then Jr1↘ r2K = Jr1K & Jr2K.

No bit operations required in the definition of ↘!

header & BIT(1)
01234567

0 xxxx x w x header

0 0000 0 1 0 BIT(1)&

0 0000 0 w 0

Paul (MPI-SWS) BFF December 9, 2022 18 / 27

Masking Bitfields via Bitwise-AND

e1 ▷e r1 @ bitfield⟨R⟩ e2 ▷e r2 @ bitfield⟨R⟩ is_mask(r2)

(e1 & e2) ▷e (r1↘ r2) @ bitfield⟨R⟩

header & BIT(1)
01234567

0 xxxx x w x header

0 0000 0 1 0 BIT(1)&

0 0000 0 w 0

Paul (MPI-SWS) BFF December 9, 2022 18 / 27

Masking Bitfields via Bitwise-AND

e1 ▷e r1 @ bitfield⟨R⟩ e2 ▷e r2 @ bitfield⟨R⟩ ((((((is_mask(r2)

(e1 & e2) ▷e (r1↘ r2) @ bitfield⟨R⟩

header & BIT(1)
01234567

0 xxxx x w x header

0 0000 0 1 0 BIT(1)&

0 0000 0 w 0

Paul (MPI-SWS) BFF December 9, 2022 18 / 27

Programmers Can Make Mistakes

The user expects to extract the owner field,

header & GENMASK(5,3)
01234567

0 a1a2a3a4 x x x header

0 0111 0 0 0 GENMASK(5,3)&

0 0a2a3a4 x x x

but this expression does incomplete extraction.

Paul (MPI-SWS) BFF December 9, 2022 19 / 27

Merging Bitfields via Bitwise-OR

e1 ▷e r1 @ bitfield⟨R⟩ e2 ▷e r2 @ bitfield⟨R⟩ r1 ## r2

(e1 | e2) ▷e (r1 ∪ r2) @ bitfield⟨R⟩

The bitfields specified in the two SBVs must be disjoint.

owner | perm
01234567

0 a1a2a3a4 0 0 0 owner

0 0000 0 1 1 perm|

0 a1a2a3a4 0 1 1

Paul (MPI-SWS) BFF December 9, 2022 20 / 27

Merging Bitfields via Bitwise-OR

e1 ▷e r1 @ bitfield⟨R⟩ e2 ▷e r2 @ bitfield⟨R⟩ r1 ## r2

(e1 | e2) ▷e (r1 ∪ r2) @ bitfield⟨R⟩

Partially define a merging operation r1 ∪ r2 if r1 ## r2:
merge (take the union of) the specified bitfields.

Lemma
If r1 ## r2, then Jr1 ∪ r2K = Jr1K | Jr2K.

No bit operations required in the definition of ∪!

owner | perm
01234567

0 a1a2a3a4 0 0 0 owner

0 0000 0 1 1 perm|

0 a1a2a3a4 0 1 1

Paul (MPI-SWS) BFF December 9, 2022 20 / 27

Merging Bitfields via Bitwise-OR

e1 ▷e r1 @ bitfield⟨R⟩ e2 ▷e r2 @ bitfield⟨R⟩ r1 ## r2
(e1 | e2) ▷e (r1 ∪ r2) @ bitfield⟨R⟩

owner | perm
01234567

0 a1a2a3a4 0 0 0 owner

0 0000 0 1 1 perm|

0 a1a2a3a4 0 1 1

Paul (MPI-SWS) BFF December 9, 2022 20 / 27

A More Complicated Example

The above rules apply to the function taken from PKVM page table entry code:

void set_valid_leaf_pte(pte_t *ptep, u64 pa, pte_t attr) {
pte_t pte = pa & PTE_ADDR_MASK;
pte |= attr & (PTE_LEAF_ATTR_LO | PTE_LEAF_ATTR_HI);
pte |= PTE_VALID;
*ptep = pte;

}

○ See §2 of our paper

Paul (MPI-SWS) BFF December 9, 2022 22 / 27

More Typing Rules

In addition to masking & merging bitfields:

Setting bitfields via |

Clearing bitfields via ~ and &

Reading bitfield values via >>

Loading bitfield values via <<

○ See §3 of our paper

Paul (MPI-SWS) BFF December 9, 2022 23 / 27

Case Studies

Codebase Lines of annotation/code
Side conditions

manual total

#1 pgtable 0.83 0 75
#2 x86_pgtable 0.64 0 17
#3 tcp_input 0.79 0 0
#4 mt7601u 0.26 3 63

Total 0.42 3 155

Mostly automated; reasonable amount of annotations

○ See §7 of our paper

Paul (MPI-SWS) BFF December 9, 2022 24 / 27

Technical Issue on Implementing Typing Rules

e1 ▷e r1 @ bitfield⟨R⟩ e2 ▷e r2 @ bitfield⟨R⟩ is_mask(r2)

(e1 & e2) ▷e (r1↘ r2) @ bitfield⟨R⟩

Issue: since R is generic (user-defined), operators such as

↘ : ∀(R : Type),R → R → R

are hard to implement in Coq.

Paul (MPI-SWS) BFF December 9, 2022 25 / 27

Technical Issue on Implementing Typing Rules

e1 ▷e r1 @ bitfield⟨R⟩ e2 ▷e r2 @ bitfield⟨R⟩ is_mask(r2)

(e1 & e2) ▷e (r1↘ r2) @ bitfield⟨R⟩

Issue: since R is generic (user-defined), operators such as

↘ : ∀(R : Type),R → R → R

are hard to implement in Coq.

Paul (MPI-SWS) BFF December 9, 2022 25 / 27

Solution: A New Type Refined by Terms

t @ bfterm⟨ σ ⟩

parameter: a signature σ

//@rc::bitfields FileInfo as u8
//@ read : bool[0]
//@ write : bool[1]
//@ execute : bool[2]
//@ owner : int[3..6]
//@rc::end

generates−−−−−→

σFileInfo ≜
[⟨0, 1⟩, ⟨1, 1⟩, ⟨2, 1⟩, ⟨3, 4⟩]

(range format: ⟨offset,width⟩)

Paul (MPI-SWS) BFF December 9, 2022 26 / 27

Solution: A New Type Refined by Terms

t @ bfterm⟨σ⟩

parameter: a signature σ

refinement: a term t of sort σ

Definition header : FileInfo :=
{| read := r; write := w; execute := x; owner := o |}.

represented by−−−−−−−−→
theader ≜ [⟨0, 1⟩ 7→ r , ⟨1, 1⟩ 7→ w , ⟨2, 1⟩ 7→ x , ⟨3, 4⟩ 7→ o] : σFileInfo

Paul (MPI-SWS) BFF December 9, 2022 26 / 27

Solution: A New Type Refined by Terms

t @ bfterm⟨σ⟩

parameter: a signature σ

refinement: a term t of sort σ

translation rule: r @ bitfield⟨R⟩ desugar to−−−−−−→ tr @ bfterm⟨σR⟩

The typing rule used in verification:

e1 ▷e t1 @ bfterm⟨σ⟩ e2 ▷e t2 @ bfterm⟨σ⟩ is_mask(t2)

(e1 & e2) ▷e (t1↘ t2) @ bfterm⟨σ⟩

Paul (MPI-SWS) BFF December 9, 2022 26 / 27

Solution: A New Type Refined by Terms

t @ bfterm⟨σ⟩

parameter: a signature σ

refinement: a term t of sort σ

translation rule: r @ bitfield⟨R⟩ desugar to−−−−−−→ tr @ bfterm⟨σR⟩

The typing rule used in verification:

e1 ▷e t1 @ bfterm⟨σ⟩ e2 ▷e t2 @ bfterm⟨σ⟩ is_mask(t2)

(e1 & e2) ▷e (t1↘ t2) @ bfterm⟨σ⟩

Paul (MPI-SWS) BFF December 9, 2022 26 / 27

Solution: A New Type Refined by Terms

t @ bfterm⟨σ⟩

parameter: a signature σ

refinement: a term t of sort σ

translation rule: r @ bitfield⟨R⟩ desugar to−−−−−−→ tr @ bfterm⟨σR⟩

The typing rule used in verification:

e1 ▷e t1 @ bfterm⟨σ⟩ e2 ▷e t2 @ bfterm⟨σ⟩ is_mask(t2)

(e1 & e2) ▷e (t1↘ t2) @ bfterm⟨σ⟩

Paul (MPI-SWS) BFF December 9, 2022 26 / 27

Summary

Key Insight: typical bitfield manipulation operates on the logical, high-level structure of
fields that are packed into integers/SBVs.

Implementation in RefinedC: new types for SBVs, typing rules with soundness proofs,
meta-theory of SBV terms.

Our webpage:

https://plv.mpi-sws.org/refinedc/bff

Paul (MPI-SWS) BFF December 9, 2022 27 / 27

https://plv.mpi-sws.org/refinedc/bff

	Introduction
	How Can I use BFF
	Typing Rules

