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Type systems in programming languages are among the most effective techniques to discover bugs well before
production. However, there is one important subdomain of data types in which errors are hardly caught:
strings. Indeed, if a string can have unexpected or invalid contents, type checkers can hardly detect this,
leading to potential bugs such as runtime substring-not-found errors or vulnerabilities such as SQL injection.
In principle, the concept of refinement types can help to express and check string properties. However, in
existing refinement type systems, strings are understudied and undersupported.

In this paper, we present the first static type checker for regular language types. Our FLAT-Checker
prototype targets string-manipulating programs in Python. It allows, for every string variable, argument, or
return value to specify its language (= the set of all possible strings) as a regular expression. FLAT-Checker
then statically checks these types, ensuring, for instance, that a well-typed program is free of substring-not-
found errors. At the heart of FLAT-Checker are rules that infer the result types for common string operations
via abstract interpretation, together with type narrowing for higher precision of type inference.

On a dataset consisting of 204 Python ad hoc parsers, with a reasonable amount of user annotations,
FLAT-Checker successfully type-checked all of them. It also outperformed four SMT solvers, including two
state-of-the-art string solvers, in terms of solvability and efficiency.
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1 Introduction

Type systems in programming languages are among the most effective and efficient techniques
to discover bugs well before production. While typical type checkers would quickly identify type
mismatches between types such as Booleans, numbers, or data types, modern refinement type
systems [Freeman and Pfenning 1991] allow programmers to encode additional semantic constraints
in types, making type checking play the role of a lightweight program verifier. Notably, the concept
of Liquid Types [Rondon et al. 2008] in Haskell [Jhala 2014], TypeScript [Vekris et al. 2016], Java
[Gamboa et al. 2023], Rust [Lehmann et al. 2023], and more, shines in reasoning about programs
manipulating integers, bit vectors, arrays, algebraic data types (ADTs), and even Rust traits.
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However, there is one important subset of data types where errors are hardly caught: strings.
While strings are ubiquitous in modern software, errors related to malformed or invalid string
contents are hard to catch, especially before production. As an example, consider a Python function
extract_minor that takes a semantic version number string, say '1.2.3', to extract the minor
version number ('3'):
1 def extract_minor(s: str) -> str:
2 i1 = s.index('.') + 1
3 i2 = s.index('.', i1)
4 return s[i1:i2]

The annotated type signature, “str to str”, is rather coarse: if we feed a string that is not a
semantic version number, say '123', then the string operation s.index('.') in Line 2 will trigger
an exception “ValueError: substring not found” because the separator '.' is not found in the
input '123'. In a bigger context, such string errors can lead to denial of service attacks, but also to
vulnerabilities such as SQL injection, and (in more low-level languages) to buffer overflows and
other serious issues.

We pose that the fundamental problem underlying these issues is that traditional type systems,
which use a unified string type for all kinds of string values, fail to capture the latent structure of
strings. This is a twofold problem—we need to be able to specify the content of strings, and we need
to check the correctness of a program with respect to these specifications.
The first problem, specifying string contents, has long been addressed by the field of formal

languages. Most programmers are familiar with the concept of regular expressions, formally denoting
sets of possible string values. The recently published FLAT framework [Zhu and Zeller 2025]
(“Formal Languages As Types” ) provides developers with language types—string types refined by
a formal language, say a regular expression (regex) or a context-free grammar. The inhabitants of
a language type are strings in that formal language. Using FLAT, we can provide a refined type
signature for extract_minor, where both the input and output types are refined by regexes:

def extract_minor(s: lang(r'[0-9]+\.[0-9]+\.[0-9]+')) -> lang(r'[0-9]+')

FLAT can type-check such language types, but only dynamically, namely, a type error such as
extract_minor('123') is only detected at runtime. The problem of static checking remains.
In this paper, we present the first (to the best of our knowledge) static type checker for regular

language types in Python. Our type checker can catch runtime errors like extract_minor('123') at
compile type (it simply reports a type error “input type mismatch”). This indicates that it can also
prove, for example, that a string function is free of SQL injection by specifying the input type to
only allow safe SQL statements. Meanwhile, if the program type-checks, we can conclude that it is
correct w.r.t. the specified types.
To focus on string-manipulating programs, and to lower the amount of engineering work, we

only consider a tiny fragment of Python: without object-oriented and dynamic features, but with
basic control flows and some commonly used string operations (see Table 1 for a full list). We offer
annotations for programmers to define regular language types (like the lang annotation shown in
the extract_minor example) and to specify loop invariants. Like in many Liquid Type systems and
program verifies, through a process of the input source along with the annotations, we generate
verification conditions (VCs).

To discharge VCs, one idea is to simply encode them as SMT formulae and resort to SMT solvers,

as Liquid Typing does. SMT solving is efficient and mature for linear integer arithmetic, but not for
strings. We noticed that even on a problem that seems simple and stupid to humans (see §2.1 for
an example later in this paper), mature SMT solvers such as Z3 [de Moura and Bjørner 2008] and
cvc5 [Barbosa et al. 2022] timed out. As string solving is an emerging field, new solvers such as
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Z3-Noodler-pos [Chen et al. 2024] and OSTRICH [Chen et al. 2019; Hague et al. 2025] have been
built, and their benchmarking shows better results. However, they still time out and even reported
wrong answers (see §7 for the details) on some of the VCs generated from the dataset [Schröder and
Cito 2025a] we use for evaluation. In short, we see SMT string solving as not ready for production.
As SMT solving has both strong (for integers) and weak points (for strings), we apply a hybrid

approach. For VCs that only need basic integer arithmetic, we resort to SMT solving. For others that
need reasoning about string operations, we take over ourselves. We rely on type inference to infer
the result types for expressions applying string operations as precise as we can. We borrow ideas
from abstract interpretation through the observation that abstract domains are types: by defining
the abstract versions that overapproximate the concrete string operations, the output of the abstract
operations give rise to the inferred types. We also introduce type narrowing to further improve
the precision of type inference, taking control-flow sensitive information into account. We turn
the inferred types into logical formulae as lemmas, which are derivable from the premises in the
VC. If the VC is indeed valid, these lemmas are likely to be helpful for SMT solvers to eventually
prove the goal by adding them as new premises. We implement these ideas as a prototype tool
FLAT-Checker. We mechanize in the Rocq interactive theorem prover the formal definitions of
strings, string operations, regular expressions, and the soundness theorems of our type inference
and narrowing rules.

We evaluated FLAT-Checker on a dataset consisting of 204 Python ad hoc parsers [Schröder and
Cito 2025a]. These parsers use string operations extensively; some involve tricky stringmanipulation
with loops; all are restricted in the Python language features they use. Given a reasonable amount
of type annotations, FLAT-Checker successfully type-checked all of them. On the generated VCs,
we compared with four SMT solvers that support string theory (two mature and two new solvers
targeting strings) and found that FLAT-Checker outperformed all of them.

Contributions. Our main contribution is FLAT-Checker, the first static type checker for regular
language types. After starting with an overview of FLAT-Checker using Python examples (§2), we
provide necessary preliminaries in §3. We then make the following additional contributions:

• Type inference (§4) and type narrowing (§5), the underlying methods for type-checking string
operations intertwined with regular language types;
• A mechanization (§6) in the Rocq interactive theorem prover of the soundness of our type
inference and narrowing rules;
• An evaluation (§7) of FLAT-Checker on 204 Python ad hoc parsers, including a comparison
with four SMT solvers.

After discussing related work (§8), §9 closes the paper with conclusion and future work.

2 A Tour of FLAT-Checker by Examples

We present an overview of the workflow and key ideas behind FLAT-Checker using four example
Python programs, including two examples (§2.3, §2.4) taken from the dataset we use for evaluation.
We showcase how users attach type annotations and loop invariants (if needed) directly in Python
code, and how FLAT-Checker type-checks them.

2.1 The Appetizer

We start with a simple Python function that aims to prove a trivial property:
1 def a_star(s: lang(r'a*')):
2 i = 0
3 while i < len(s):
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4 assert s[i] == 'a'
5 i += 1

Above all, at Line 1, we specify the type of the input string s: a regular language type of the regex
r'a*' (repeating 'a' zero or many times). FLAT-Checker offers a special type constructor lang to
define regular language types. This constructor takes a regex literal as the argument: it follows the
same syntax of Python’s regexes defined in the re module. FLAT-Checker supports a subset of
Python’s regexes; see §3.2 for a full set. In the function body, we iterate all characters of s in a loop
at Lines 3–5, and assert that any character of s is 'a' at Line 4.
Although a_star involves a loop, we do not have to specify loop invariants manually, as what

we need here, 0 <= i <= len(s), is rather naive and FLAT-Checker can figure it out automatically.
For nontrivial loop invariants, FLAT-Checker offers special annotations for users to specify them,
as we will see later in §2.3 and §2.4. We focus on partial correctness (i.e., correctness assuming
termination) in the entire framework.

Workflow. So far we have completed necessary annotations; it is time for FLAT-Checker to
type-check the program. We summarize the workflow as follows:

(1) A frontend reads the Python code along with special annotations, performs “basic” type
checking (by erasing regular language types as plain string types), and transpiles it into
a program of our core language, which is essentially the IMP language [Pierce et al. 2025]
extended with string operations (see §3.1 for the list).

(2) On the core program, FLAT-Checker applies standard weakest-pre transformation to extract
verification conditions (VCs), i.e., the obligations that ensure type correctness.

(3) FLAT-Checker discharges VCs via a combination of type inference and SMT solving; if any
VC is unproved, type errors will be reported accordingly.

Extracted VCs. For the a_star function, FLAT-Checker extracts four VCs:

𝜑1 : 𝑠 ∈ r'a*'⇒ 0 ≤ 0 ≤ |𝑠 |
𝜑2 : 𝑠 ∈ r'a*' ∧ 0 ≤ 𝑖 ≤ |𝑠 | ∧ 𝑖 < |𝑠 | ⇒ 0 ≤ 𝑖 < |𝑠 |
𝜑3 : 𝑠 ∈ r'a*' ∧ 0 ≤ 𝑖 ≤ |𝑠 | ∧ 𝑖 < |𝑠 | ⇒ 𝑠 [𝑖] = 'a'

𝜑4 : 𝑠 ∈ r'a*' ∧ 0 ≤ 𝑖 ≤ |𝑠 | ∧ 𝑖 < |𝑠 | ⇒ 0 ≤ 𝑖 + 1 ≤ |𝑠 |

In all, the type requirement s: lang(r'a*') is represented as the regex membership test 𝑠 ∈ r'a*'.
Two VCs, 𝜑1 and 𝜑4, come from the (guessed) loop invariant 𝑃𝐼 � 0 ≤ 𝑖 ≤ |𝑠 |: 𝜑1 checks that 𝑃𝐼
holds before the execution of the loop, i.e., before Line 3; 𝜑4 checks that 𝑃𝐼 holds after one iteration,
during which the loop variable 𝑖 has been increased by 1. Another VC, 𝜑2, is a side condition that
comes from the char-at operation s[i] occurred in Line 4: it checks that the string index 𝑖 is in
range 0 ≤ 𝑖 < |𝑠 |. Finally, the last VC, 𝜑4, comes from the user assertion in Line 4.

When SMT solving succeeds. Expect 𝜑3, the other three VCs only require basic integer arithmetic,
without the need to know 𝑠 ∈ r'a*'. For VCs like them, FLAT-Checker gives SMT solvers a try. It
elides all regex membership tests such as 𝑠 ∈ 𝑎, encodes VCs as corresponding SMT formulae, and
invokes the backend solver cvc5 [Barbosa et al. 2022] to check their validity. cvc5 proves 𝜑1, 𝜑2,
and 𝜑4.

When SMT solving fails. The VC 𝜑3 involves string operations, but it describes a simple and
stupid property for strings in r'a*': any of its character must be 'a'. We tried mature SMT solvers
including cvc5 and Z3: unfortunately, both timed out on this query after a minute.

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2025.



Static Checking of Regular Language Types via Abstract Interpretation 1:5

Type inference and lemmas. To discharge this, FLAT-Checker relies on type inference to generate
useful lemmas about the string operations used in the VC, hoping these lemmas either trivially
imply the goal or guide SMT solving to prove the goal. Here, given that 𝑠 has type r'a*', 𝑠 [𝑖] is
inferred to have type r'a', from which a lemma 𝑠 [𝑖] = 'a' is generated, which is trivially the goal
we wish to prove in 𝜑3. So far, all VCs are discharged and FLAT-Checker concludes the program is
well-typed.

Under the hood, we formulate the type inference problem as an abstract interpretation problem:
given a string 𝑠 and some string operation 𝑓 in the concrete domain, find an abstract operation 𝑓 #

that overapproximates the concrete semantics of 𝑓 , i.e., 𝑠 ∈ 𝑟 ⇒ 𝑓 (𝑠) ∈ 𝑓 # (𝑟 ). To infer the type
of 𝑠 [𝑖], where 𝑖 can be any valid index, i.e., 0 ≤ 𝑖 < |𝑠 |. Concretely, 𝑠 [𝑖] could be any character
in 𝑠 . Abstractly, the set of all characters occurred in 𝑟 , called the alphabet of 𝑟 , denoted by 𝛼 (𝑟 ),
overapproximates 𝑠 [𝑖]. Thus, 𝑠 [𝑖] has type 𝛼 (r'a*') = r'a'. If the type of 𝑠 were r'(a|b)*', then
𝑠 [𝑖] would have type r'(a|b)', from which 𝜑3 would become unprovable so FLAT-Checker would
report a type error.

Key takeaways. From this short appetizer example, we see that FLAT-Checker:
• offers a regular language type constructor lang that supports Python’s regex syntax;
• guesses naive loop invariants;
• discharges VCs via a combination of type inference based on abstract string operations and
SMT solving.

2.2 Substring Extraction in Version Numbers

In the second example, we study the extract_minor function introduced in §1:
1 def extract_minor(s: lang(r'[0-9]+\.[0-9]+\.[0-9]+')) -> lang(r'[0-9]+'):
2 i1 = s.index('.') + 1
3 i2 = s.index('.', i1)
4 return s[i1:i2]

Recall that we aim to extract the minor version from a three-part semantic version number,
where the major, minor, and patch parts are separated by a dot ('.'). The minor version is the
substring in between the first and second '.' occurred in s. To locate these two indices, we use
s.index(t, i): it evaluates to the index of the first occurrence of the pattern t in s starting from
index i (it will raise a runtime error if t is not found). At Line 2, we compute i1 as the position to

the right of the first '.' in s. At Line 3, we compute i2 as the position of the second '.' in s, which
is the first '.' starting from i1. At Line 4, the substring operation s[i1:i2] extracts the needed
minor version, where the starting index i1 is inclusive and the ending index i2 is exclusive.

FLAT-Checker type-checks extract_minor using the same workflow summarized in §2.1. During
transpilation, s.index('.', i1) is desugared to s[i1:].index('.'), because the corresponding find
operation 𝑠 .find (𝑡) defined in our core language does not take the optional argument i1 as the
starting index. For simplicity, we will only show VCs of great importance and interest. Here the
most important one checks that the return value has the annotated return type:

𝑠 ∈ r'[0-9]+\.[0-9]+\.[0-9]+'⇒ 𝑠 [𝑖1 : 𝑖2] ∈ r'[0-9]+'

where 𝑖1 � 𝑠 .find ('.') + 1, 𝑖2 � 𝑠 [𝑖1 :] .find ('.')

This is indeed a type checking task. But FLAT-Checker does not have specific type checking
rules. Instead, it relies on the type inference to obtain an inferred type 𝑟𝑖 first and then checks that
𝑟𝑖 is a subtype of the expected type 𝑟𝑒 , i.e., 𝑟𝑖 ⊆ 𝑟𝑒 . The type inference problem here is complex
as the expression 𝑠′ � 𝑠 [𝑖1 : 𝑖2] has a complex form (once 𝑖1 and 𝑖2 are unfolded). It decomposes
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this complex task into smaller and simpler ones via simplification, namely 𝑠′ is simplified into
𝑠2 [: 𝑠2.find ('.')] where 𝑠2 � 𝑠1 [1 :] and 𝑠1 � 𝑠 [𝑠 .find ('.') :].

Infer the type of 𝑠1. Concretely, the pattern '.' splits 𝑠 into two parts where 𝑠1 = 𝑠 [𝑠 .find ('.') :] is
the suffix starting from the first '.'. Abstractly, this pattern splits 𝑟 � r'[0-9]+\.[0-9]+\.[0-9]+'

into two parts where 𝑟1 � r'\.[0-9]+\.[0-9]+', the suffix starting from the first '.' in 𝑟 , overap-
proximates 𝑠1. Thus, 𝑠1 has type 𝑟1.

Infer the type of 𝑠2. Concretely, 𝑠2 = 𝑠1 [1 :] drops the first character from 𝑠1. Abstractly, dropping
the first character from 𝑟1 = r'\.[0-9]+\.[0-9]+' gives 𝑟2 � r'[0-9]+\.[0-9]+', a suffix of 𝑟1, that
overapproximates 𝑠2. Thus, 𝑠2 has type 𝑟2.

Infer the type of 𝑠′. This is dual to the type inference of 𝑠1. Concretely, the pattern '.' splits 𝑠2
into two parts where 𝑠′ = 𝑠2 [: 𝑠2.find ('.')] is the prefix to the left of the first '.'. Abstractly, this
pattern splits 𝑟2 = r'[0-9]+\.[0-9]+' into two parts where 𝑟 ′ � r'[0-9]+', the prefix to the left of
the first '.', overapproximates 𝑠′. Thus, 𝑠′ has type 𝑟 ′. See §4.2.1 for the formal definitions of the
abstract operations shown above.

Subtyping. The inferred type 𝑟 ′ happens to be the expected r'[0-9]+' (i.e., they are syntactically
equivalent), thus the subtype check passes trivially. In general cases where the inferred and expected
types differ in syntax, we apply a symbolic approach proposed by Keil and Thiemann [2014].

Local type inference. Due to the nature that FLAT-Checker only infers the result types of string
operations, it indeed supports local type inference. This feature brings two benefits to users. First,
users are allowed to query the type of any string-typed expression. To use it, FLAT-Checker offers
a special show_type(e) command that will display the inferred type for the string-typed expression
e specified by the user, for example:

def extract_minor(s: VersionNumber):
i1 = s.index('.') + 1
show_type(s[i1:])
i2 = s.index('.', i1)
return s[i1:i2]

It will output the type 𝑟2 for s[i1:]. Second, users do not need to explicitly specify return types
for non-recursive functions, but FLAT-Checker automatically infers it. In the code shown above
(where the return type is not specified), it will infer the return type to be 𝑟 ′.

Key takeaways. From this example, we see that FLAT-Checker:

• decomposes complex type inference tasks into smaller and simpler ones via expression
simplification;
• allows local type inference, and offers a show_type command to display the inferred type of a
given string-typed expression;
• relies on subtype checking for type checking.

2.3 Reasoning About Loops with Invariants

Starting from the third example, let us move from short functions to longer ones that involve non-
trivial loops. To reason about them, a standard approach from the program verification community
is to employ user-specified loop invariants. FLAT-Checker offers a special inv command to accept
user-specified loop invariants described as Boolean-typed expressions, at the beginning of a loop
body, as follows:
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while cond:
inv(invariant1)

inv(invariant2)
... # original code of loop body

Let us consider an example taken from our evaluation dataset. The input type is specified (note
that here we introduce a type alias in Line 1), but loop invariants are missing:
1 type Input = lang(r'a*|b*')
2

3 def f401(s: Input):
4 i = 0
5 ca = 0
6 cb = 0
7 while i < len(s):
8 if s[i] == "a":
9 ca += 1
10 if s[i] == "b":
11 cb += 1
12 i += 1
13 assert ca == len(s) or cb == len(s)

Inspecting the loop, we see that the local variable ca (resp. cb) maintains the number of 'a's
(resp. 'b's) we have seen so far. Because the input string s contains either 'a' or 'b', the variable
ca (resp. cb) is always identical to i if s contains 'a' (resp. 'b'). Therefore, when the loop exits, i
will become len(s), so that the assertion in Line 13 will hold. Based on this analysis, we specify
two loop invariants and insert them at Line 8:

inv(0 <= i <= len(s))
inv(ca == i if 'a' in s else cb == i)

The first one is usual for describing the range of i. The second one uncovers the relationship
between ca, cb, and i, as discussed above. The Python expression e1 if e else e2 is analogue
to if e then e1 else e2 in Haskell or OCaml, and the infix test (aka string contains) 'a' in s is
analogue to s.contains("a") in Java or Scala.

FLAT-Checker now takes over type checking. The most important and difficult VCs check that
the second loop invariant holds after an iteration:

𝑃 � 𝑠 ∈ r'a*|b*' ∧ 0 ≤ 𝑖 ≤ |𝑠 | ∧ if 'a' in 𝑠 then 𝑐𝑎 = 𝑖 else 𝑐𝑏 = 𝑖 ∧ 𝑖 < |𝑠 |
𝜑1 : 𝑃 ∧ 𝑠 [𝑖] = 'a'⇒ if 'a' in 𝑠 then 𝑐𝑎 + 1 = 𝑖 + 1 else 𝑐𝑏 = 𝑖 + 1
𝜑2 : 𝑃 ∧ 𝑠 [𝑖] = 'b'⇒ if 'a' in 𝑠 then 𝑐𝑎 = 𝑖 + 1 else 𝑐𝑏 + 1 = 𝑖 + 1

where 𝜑1 is for the case 𝑠 [𝑖] = 'a' (the condition in Line 8), and 𝜑2 is for the case 𝑠 [𝑖] = 'b' (the
condition in Line 10).

Type inference, first attempt. To discharge them, FLAT-Checker generates lemmas through
inferring the type of 'a' in 𝑠 . Noticing this infix test returns a Boolean value, the inferred type
should not be a regular language type any more, but one of the truth values in three-valued logic:
• true if the test always evaluates to true;
• false if the test always evaluates to false;
• otherwise bool, indicating unknown or nondetermined.

If starting from the user-specified type r'a*|b*' for 𝑠 , one can not determine whether 'a' in 𝑠 is
true or false, as 'a' may (if 𝑠 ∈ r'a*') or may not (if 𝑠 ∈ r'b*') occur in 𝑠 . Thus 'a' in 𝑠 is only safe
to have type bool, but this does not give a useful lemma to progress the VCs.
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Type narrowing to rescue. The user-specified type for 𝑠 is too coarse to infer precise types that
lead to useful lemmas. But noticing that some if- and while-guards implicitly provide additional
constraints on 𝑠 , it is possible to compute amore precise type according to them. Here, the constraint
𝑠 [𝑖] = 'a' in 𝜑1 (resp. 𝑠 [𝑖] = 'b' in 𝜑2) indeed narrows down the possible values of 𝑠 . FLAT-Checker
applies type narrowing on r'a*|b*' according to the predicate 𝜆𝑠, 𝑠 [𝑖] = 'a' (resp. 𝜆𝑠, 𝑠 [𝑖] = 'b'),
yielding a more precise type r'a+' (resp. r'b+').

From 𝑠 ∈ r'a+' (resp. 𝑠 ∈ r'b+'), it will infer that 'a' in𝑠 has type true (resp. false), which leads to
a useful lemma 'a' in𝑠 (resp. ¬('a' in𝑠)). With this lemma, the VC becomes simple enough for SMT
solving, as it can be simplified into a trivial goal 𝑐𝑎 = 𝑖 ⇒ 𝑐𝑎 + 1 = 𝑖 + 1 (resp. 𝑐𝑏 = 𝑖 ⇒ 𝑐𝑏 + 1 = 𝑖 + 1).

Key takeaway. This example demonstrates that with user-specified loop invariants, type inference,
type narrowing, and SMT solving, all in one framework FLAT-Checker, we are able to verify
nontrivial properties about loops within a reasonable amount of human efforts.

2.4 Types as Loop Invariants

In the last example, we study a program that iterates multiple characters at a time. This program is
also taken from the Panini benchmark suite:

1 type Input = lang(r'(a[^ab]b)*')
2

3 def f451(s: Input):
4 i = 0
5 while i < len(s):
6 a,x,b = s[i:i+3]
7 assert a == "a"
8 assert b == "b"
9 assert x != "a" and x != "b"
10 i += 3

The input type reveals that the input string s loops in units of every three characters, where
the first character is 'a', the last is 'b', and the middle is any character other than 'a' and 'b'.
The loop at Lines 5–10 also iterates s in units of every three characters. At Line 6, it extracts the
three characters starting at i and store them as a, x, and b respectively. List unpacking is used in
this assignment statement, which requires that the number of extracted values is equal to the the
number of the variables on the left-hand side. FLAT-Checker desugars it into:

assert len(s[i:i+3]) == 3
a = s[i:i+3][0]
x = s[i:i+3][1]
b = s[i:i+3][2]

Then, the three assertions in Lines 7–9 test each extracted character.
Our key observation here is that in each iteration, the index i always points to a starting position

of the three-character unit. This can be precised described as “s[i] is in regex r'(a[^ab]b)*'”,
which is expressed as isinstance(s[i:], Input) in Python, in a view of types. We thus specify
it as a loop invariant, together with a usual one for describing the range of i, and insert them at
Line 6:

inv(0 <= i < len(s) + 3)
inv(isinstance(s[i:], Input))
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FLAT-Checker now takes over type checking. The VCs we are interested here check that the
three assertions in Lines 7–9 are valid:

𝑃 � 𝑠 ∈ r'(a[^ab]b)*' ∧ 𝑠 [𝑖 :] ∈ r'(a[^ab]b)*' ∧ 0 ≤ 𝑖 < |𝑠 | + 3 ∧ 𝑖 < |𝑠 |
𝜑1 : 𝑃 ⇒ 𝑎 � 𝑠 [𝑖 : 𝑖 + 3] [0] = 'a'

𝜑2 : 𝑃 ⇒ 𝑏 � 𝑠 [𝑖 : 𝑖 + 3] [2] = 'b'

𝜑3 : 𝑃 ⇒ 𝑥 ≠ 'a' ∧ 𝑥 ≠ 'b' where 𝑥 � 𝑠 [𝑖 : 𝑖 + 3] [1]
To discharge them, FLAT-Checker first decomposes these substrings similar to what we have

seen in §2.2: 𝑠 [𝑖 : 𝑖 + 3] [𝑘] for 𝑘 = 0, 1, 2 is simplified to 𝑠′ [𝑘] where 𝑠′ � 𝑠 [𝑖 :] [: 3].

Infer the type of 𝑠′. Concretely, 𝑠′ = 𝑠 [𝑖 :] [: 3] takes three character from 𝑠 [𝑖 :]. Abstractly, taking
three characters from r'(a[^ab]b)*' gives 𝑟 ′ � r'a[^ab]b', a prefix of 𝑟 � r'(a[^ab]b)*', that
overapproximates 𝑠′. Thus, 𝑠′ has type 𝑟 ′.

Infer the type of 𝑠′ [0]. Concretely, 𝑠′ [0] is the first character of 𝑠′. Abstractly, taking the first
character from 𝑟 ′ = r'a[^ab]b' gives r'a' that approximates 𝑠′ [0]. Thus, 𝑠′ [0] has type r'a', from
which a lemma 𝑠′ [0] = 'a' is derived, and 𝜑1 is done.

Infer the types of 𝑠′ [1] and 𝑠′ [2]. Concretely, 𝑠′ [1] is the first character after dropping one
character from 𝑠′, i.e., 𝑠′ [: 1] [0]. Abstractly, dropping one character from 𝑟 ′ = r'a[^ab]b' gives
r'[^ab]b' that approximates 𝑠′ [: 1], and then taking the first character from it gives r'[^ab]' that
approximates 𝑠′ [1]. Thus, 𝑠′ [1] has type r'[^ab]', from which a lemma 𝑠′ [1] ≠ 'a' ∧ 𝑠′ [1] ≠ 'b'

is derived, and 𝜑3 is done. Similarly, 𝑠′ [2] has type r'b', from which a lemma 𝑠′ [2] = 'b' is derived,
and 𝜑2 is done.

Key takeaway. This example shows that “(regular language) types as invariants” is a good idea
for reasoning about loops like in f451 that traverses strings in accordance with their underlying
looping structure, as the types precisely encode the needed structural information for the suffixes
being traversed.

3 Preliminaries

3.1 Strings and String Operations

Let Σ be the set of Unicode characters. A string 𝑠 ∈ S is a list of Unicode characters. Using the
list syntax, we denote an empty string by [] and a nonempty string by 𝜎 :: 𝑠 where 𝜎 is its head
character. We consider string operations listed in Table 1, with their equivalences represented in
Python and SMT-LIB, where the meta-variables 𝑠, 𝑡 range over strings, and 𝑖, 𝑗 range over integers.

The concat, reverse, and length operations all have usual semantics. We use the reverse operation
to better describe operations defined by duality, though it is not included in SMT-LIB.
The char-at operation returns a singleton string [𝜎] if 0 ≤ 𝑖 < |𝑠 | and 𝜎 is the character of 𝑠

at 𝑖; otherwise it returns []. We do not support Python’s negative index feature, where s[-1] is a
shorthand of s[len(s) - 1]. In our setting, 𝑠 [𝑖] = [] if 𝑖 < 0. Thus 𝑠 [𝑖] is equivalent to Python’s
s[i] only if 0 ≤ 𝑖 < |𝑠 |.
For the substring operation, if both 𝑖 and 𝑗 are nonnegative, it will extract all characters from

𝑠 starting at 𝑖 (inclusive) and ending until max{ 𝑗, |𝑠 |} (exclusive) as a string. If 𝑖 < 𝑗 , or either 𝑖
or 𝑗 is negative, it will return []. Thus 𝑠 [𝑖 : 𝑗] is equivalent to Python’s s[i:j] if both 𝑖 and 𝑗

are nonnegative. The corresponding SMT-LIB term is (str.substr s i (- j i)), where the last
argument is the length of the extracted substring.

The substring operation contains two special forms: 𝑠 [𝑖 :] as a shorthand of 𝑠 [𝑖 : |𝑠 |], and 𝑠 [: 𝑗]
as a shorthand of 𝑠 [0 : 𝑗]. They happen to be the drop and take operations on lists: 𝑠 .drop(𝑖) and
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Table 1. String operations.

Name Notation Python SMT-LIB

concat 𝑠1 ++ 𝑠2 s1 + s2 (str.++ s1 s2)

reverse 𝑠−1 s[::-1] -
length |𝑠 | len(s) (str.len s)

char-at 𝑠 [𝑖] s[i] if 0 <= i < len(s) else '' (str.at s i)

substring 𝑠 [𝑖 : 𝑗] s[i:j] if i >= 0 and j >= 0 else '' (str.substr s i (- j i))

prefix 𝑡 ⊑ 𝑠 s.startswith(t) (str.prefixof t s)

suffix 𝑡 ⊒ 𝑠 s.endswith(t) (str.suffixof t s)

infix 𝑡 in 𝑠 t in s (str.contains s t)

find 𝑠 .find (𝑡) s.find(t) (str.indexof s t 0)

𝑠 .take( 𝑗). Indeed, the substring operation can be defined by composing a take and a drop operation,
in either order:

𝑠 [𝑖 : 𝑗] = 𝑠 [: 𝑗] [𝑖 :] 𝑠 [𝑖 : 𝑗] = 𝑠 [𝑖 :] [ 𝑗 − 𝑖 :]

The char-at operation can be defined by 𝑠 [𝑖] = 𝑠 [𝑖 :] [1].
The prefix, suffix, and infix (or contains, we use the name “infix” for better consistency with the

other two operations) operations all have usual semantics.
The find operation returns the index of the first occurrence of 𝑡 in 𝑠 if found, and −1 otherwise.

In SMT-LIB, the last argument specifies the starting index. We desugar (str.indexof s t i) as
𝑠 [𝑖 :] .find (𝑡) in our setting. In Python, there is a safe version s.index(t) that will raise ValueError

if t is not found.

3.2 Regular Expressions

We consider a kind of extended regular expressions presented in [Keil and Thiemann 2014]:

𝑟 ::= ∅ | 𝜀 | 𝐶 | 𝑟1 ++ 𝑟2 | 𝑟1 ∪ 𝑟2 | 𝑟 ∗

Compare with standard regular expressions, the literals (𝐶s) are charsets, i.e., any subset of Σ. The
usual character literal 𝜎 is encoded as {𝜎}, and the all-char expression is encode as Σ.
We inductively define the membership relation “𝑠 ∈ 𝑟” (𝑠 is a member of 𝑟 ) by the following

rules:

[] ∈ 𝜀
∈𝜀

𝜎 ∈ 𝐶
[𝜎] ∈ 𝐶

∈𝐶
𝑠1 ∈ 𝑟1 𝑠2 ∈ 𝑟2
𝑠1 ++ 𝑠2 ∈ 𝑟1 ++ 𝑟2

∈ ++

𝑠 ∈ 𝑟1
𝑠 ∈ 𝑟1 ∪ 𝑟2

∈𝐿∪
𝑠 ∈ 𝑟2

𝑠 ∈ 𝑟1 ∪ 𝑟2
∈𝑅∪ [] ∈ 𝑟 ∗

∈0∗
𝑠1 ≠ [] 𝑠1 ∈ 𝑟 𝑠2 ∈ 𝑟 ∗

𝑠1 ++ 𝑠2 ∈ 𝑟 ∗
∈∗

The usual notion of “the language of 𝑟” is essentially {𝑠 | 𝑠 ∈ 𝑟 }.
Kleene plus 𝑟+, optional 𝑟 ?, power 𝑟𝑛 (repeat 𝑟 exactly 𝑛 times), and loop 𝑟 {𝑛1,𝑛2 } (repeat 𝑟 at least

𝑛1 and at most 𝑛2 times) can be desugared into basic constructs:

𝑟+ � 𝑟 ++ 𝑟 ∗ 𝑟 ? � 𝜀 ∪ 𝑟 𝑟 0 � 𝜀 𝑟𝑛 � 𝑟 ++ 𝑟𝑛−1

𝑟 {𝑛,𝑛+𝑘 } � 𝑟𝑛 ++ (𝑟 0 ∪ · · · ∪ 𝑟𝑘 )
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We lift the reverse operation from strings to regexes:

𝑟1 ++ 𝑟2 −1 � 𝑟2
−1 ++ 𝑟1

−1

𝑟1 ∪ 𝑟2
−1
� 𝑟1

−1 ∪ 𝑟2
−1

𝑟 ∗
−1
�

(
𝑟
−1
)∗

𝑟
−1
� 𝑟 otherwise

This operation overapproximates the semantics of the string reverse operation:

Lemma 3.1. If 𝑠 ∈ 𝑟 , then 𝑠−1 ∈ 𝑟
−1
.

The Brzozowski derivative [Brzozowski 1964] 𝜕𝜎𝑟 computes the regex after consuming 𝜎 using 𝑟
(if not possible, it returns ∅):

𝜕𝜎∅ � ∅
𝜕𝜎𝜀 � ∅
𝜕𝜎𝐶 � if 𝜎 ∈ 𝐶 then 𝜀 else ∅

𝜕𝜎 (𝑟1 ++ 𝑟2) � (𝜕𝜎𝑟1 ++ 𝑟2) ∪ (if 𝜈 (𝑟1) then 𝜕𝜎𝑟2 else ∅)
𝜕𝜎 (𝑟1 ∪ 𝑟2) � 𝜕𝜎𝑟1 ∪ 𝜕𝜎𝑟2

𝜕𝜎 (𝑟 ∗) � 𝜕𝜎𝑟 ++ 𝑟 ∗

Lemma 3.2. 𝑠 ∈ 𝜕𝜎𝑟 ⇔ 𝜎 :: 𝑠 ∈ 𝑟 .
The Brzozowski derivative can be extended from characters to strings via chaining:

𝜕[ ]𝑟 � 𝑟

𝜕𝜎 ::𝑡 � 𝜕𝑡 (𝜕𝜎𝑟 )
Lemma 3.3. 𝑠 ∈ 𝜕𝑡𝑟 ⇔ 𝑡 ++ 𝑠 ∈ 𝑟 .
We say two regexes are equivalent, denoted by 𝑟1 ≡ 𝑟2, if for any string 𝑠 , 𝑠 ∈ 𝑟1 ⇔ 𝑠 ∈ 𝑟2.

4 Type Inference via Abstract Operations

Type inference is the fundamental component of FLAT-Checker. The inferred types are used to
immediately discharge the VC or derive useful lemmas that ideally make the VC simple enough for
SMT solving. Type inference applies to all string operations listed in Table 1. For each, we define
one or more abstract operations that overapproximate its concrete semantics. The return values
of the abstract operations, which are elements in the abstract domain of the return values of that
concrete operation, are regarded as the inferred types (“abstract domains as types”). The concrete
operations can return strings, Booleans, and integers. Thus our type system includes three groups
of refinement types:
• regexes as refinement types for strings (i.e., regular language types),
• three-valued logic truth values as refinement types for Booleans (introduced in §2.3), and
• integer intervals from standard interval abstraction [Cousot and Cousot 1976] as refinement
types for integers.

We summarize the terms and types (in our core language) relevant to type inference as follows:
Term 𝑒 ::= 𝑠 | 𝑛 | 𝑥 | 𝑒1 + 𝑒2 | 𝑒1 − 𝑒2

| 𝑒1 ++ 𝑒2 | 𝑒−1 | |𝑒 | | 𝑒 [𝑒𝑖 ] | 𝑒 [𝑒𝑖 : 𝑒 𝑗 ] | 𝑒.find (𝑒′) | 𝑒′ ⊑ 𝑒 | 𝑒′ ⊒ 𝑒 | 𝑒′ in 𝑒

Type 𝜏 ::= 𝑟 | true | false | bool | 𝐼
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The meta variable 𝑠 ranges over strings, 𝑛 ranges over integers, 𝑥 ranges over program variables,
and 𝐼 ranges over integer intervals. Terms constructing the string operations listed in Table 1 share
the same notation.
We introduce the type inference judgement “Γ ⊢ 𝑒 ⊲ 𝜏”: it states that, under the proof context

Γ, the term 𝑒 is inferred to have the (refinement) type 𝜏 . For a VC, the proof context is the set of
all premises (or assumptions, constraints) on the left-hand side of “⇒”. We first present several
straightforward type inference rules:

Γ ⊢ 𝑠 ⊲ {𝑠}
𝜏-str-const

Γ ⊢ 𝑛 ⊲ [𝑛, 𝑛]
𝜏-int-const

(𝑒 ∈ 𝑟 ) ∈ Γ
Γ ⊢ 𝑒 ⊲ 𝑟

𝜏-ctx

Γ ⊢ 𝑒1 ⊲ 𝑟1 Γ ⊢ 𝑒2 ⊲ 𝑟2
Γ ⊢ 𝑒1 ++ 𝑒2 ⊲ 𝑟1 ++ 𝑟2

𝜏-concat
Γ ⊢ 𝑒 ⊲ 𝑟

Γ ⊢ 𝑒−1 ⊲ 𝑟
−1 𝜏-reverse

Semantically, Γ ⊢ 𝑒 ⊲ 𝜏 is interpreted as Γ ⇒ 𝑒 ∈ 𝜏 . We say a rule is sound if it is logically valid

under such a semantic interpretation. For example, we formulate the soundness of the rule 𝜏-concat
as the following logical proposition, which is valid by ∈ ++ :

(Γ ⇒ 𝑒1 ∈ 𝑟1) ∧ (Γ ⇒ 𝑒2 ∈ 𝑟2) ⇒ (Γ ⇒ 𝑒1 ++ 𝑒2 ∈ 𝑟1 ++ 𝑟2).
Similarly, the soundness of the rule 𝜏-reverse is given by Lemma 3.1. All the rules we will present
in this section are proved sound in Rocq.

4.1 Prefix, Suffix, and Infix

As the suffix test is just the reverse of prefix test: 𝑡 ⊒ 𝑠 ⇔ 𝑡−1 ⊑ 𝑠−1, we will only consider rules for
prefix and infix test. Given constant strings 𝑡 as patterns in 𝑡 ⊑ 𝑒 and 𝑡 in 𝑒 , we study under which
conditions the tests are determined to be true or false. For any other cases including non-constant
patterns, the inferred type is simply bool.

4.1.1 Rules for prefix. We start with the prefix test 𝑡 ⊑ 𝑒 . Let 𝑟 be the inferred type for 𝑒 . Recall
the property of Brzozowski derivatives. By Lemma 3.3, if 𝜕𝑡𝑟 is empty, then 𝑡 is never a prefix of 𝑒 ,
which suggests the following rule:

Γ ⊢ 𝑒 ⊲ 𝑟 𝜕𝑡𝑟 ≡ ∅
Γ ⊢ 𝑡 ⊑ 𝑒 ⊲ false

𝜏-prefix-false

Oppositely, to show that 𝑡 is always a prefix of 𝑒 , computing derivative alone is insufficient. We
must also ensure that at all times a character 𝜎 ∈ 𝑡 is ready to be consumed, any string in that
language must start with 𝜎 but nothing else. For this, we need a “time machine” that restores the
regex used to consume 𝜎 . We define this as an abstract operation take1 that overapproximates the
take-first-character operation:

take1∅ � 𝜀

take1 𝜀 � 𝜀

take1𝐶 � 𝐶

take1(𝑟1 ++ 𝑟2) � take1 𝑟1 ∪ (if 𝜈 (𝑟1) then take1 𝑟2 else ∅)
take1(𝑟1 ∪ 𝑟2) � take1 𝑟1 ∪ take1 𝑟2

take1(𝑟 ∗) � take1 𝑟 ∪ 𝜀
Like in Brzozowski derivative, we must consider the case when 𝑟1 is nullable for 𝑟1 ++ 𝑟2. For 𝑟 ∗, the
possibility of repeating 𝑟 zero times is also considered (by ∪-ing 𝜀).
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Lemma 4.1. If 𝑠 ∈ 𝑟 , then 𝑠 .take(1) ∈ take1 𝑟 .

Then our approach is formulated as a procedure prefix∀𝑡 :

prefix
∀
[ ] 𝑟 � true

prefix
∀
𝜎 ::𝑡 𝑟 � if take1 𝑟 ≡ {𝜎} then prefix

∀
𝑡 (𝜕𝜎𝑟 ) else false

Lemma 4.2. If prefix∀𝑡 𝑟 , then 𝑡 ⊑ 𝑠 for any 𝑠 ∈ 𝑟 .

This lemma suggests the following sound rule determining that 𝑡 is a prefix of 𝑒:

Γ ⊢ 𝑒 ⊲ 𝑟 prefix
∀
𝑡 𝑟

Γ ⊢ 𝑡 ⊑ 𝑒 ⊲ true
𝜏-prefix-true

4.1.2 Rules for infix. If 𝑡 in𝑠 , then there must be a suffix 𝑠2 of 𝑠 , which starts with the first character,
say 𝜎 , of 𝑡 (note the case for 𝑡 = [] is trivial so we elide it here), such that 𝑡 ⊑ 𝑠2. This motivates us
to decompose the infix tests into two steps: first split 𝑠 into a prefix 𝑠1 and 𝑠2, where 𝑠2 starts with
𝜎 , and then reapply the approaches we have introduced for prefix to test if 𝑡 ⊑ 𝑠2.

For the first step, we define an abstract operation split𝜎 𝑟 to split 𝑟 into a set of regex pairs, where
each ⟨𝑟1, 𝑟2⟩ is a possibility that overapproximates the prefix and suffix pair ⟨𝑠1, 𝑠2⟩ after splitting 𝑠
by 𝜎 :

split𝜎 ∅ � ∅
split𝜎 𝜀 � ∅
split𝜎 𝐶 � if 𝜎 ∈ 𝐶 then {⟨𝜀,𝐶⟩} else ∅

split𝜎 (𝑟1 ++ 𝑟2) � {⟨𝑟𝐿, 𝑟𝑅 ++ 𝑟2⟩ | ⟨𝑟𝐿, 𝑟𝑅⟩ ∈ split𝜎 𝑟1} ∪ {⟨𝑟1 ++ 𝑟𝐿, 𝑟𝑅⟩ | ⟨𝑟𝐿, 𝑟𝑅⟩ ∈ split𝜎 𝑟2}
split𝜎 (𝑟1 ∪ 𝑟2) � split𝜎 𝑟1 ∪ split𝜎 𝑟2

split𝜎 (𝑟 ∗) � {⟨𝑟 ∗ ++ 𝑟𝐿, 𝑟𝑅 ++ 𝑟 ∗⟩ | ⟨𝑟𝐿, 𝑟𝑅⟩ ∈ split𝜎 𝑟 }

Lemma 4.3. Let 𝑠 ∈ 𝑟 . If 𝑠 [𝑖] = 𝜎 , then there exist ⟨𝑟1, 𝑟2⟩ ∈ split𝜎 𝑟 such that 𝑠 [: 𝑖] ∈ 𝑟1 and

𝑠 [𝑖 :] ∈ 𝑟2.

This lemma shows that split𝜎 covers all possible splits by 𝜎 . Thus, to show that 𝑡 is never an infix,
it suffices to show that 𝑡 is not a prefix of any 𝑟2 for ⟨𝑟1, 𝑟2⟩ ∈ split𝜎 𝑟 , via Brzozowski derivative as
done in 𝜏-prefix-false. For convenience, we take the (big) union of all 𝑟2s as

splitSuffix𝜎 �
⋃
{𝑟2 | ⟨𝑟1, 𝑟2⟩ ∈ split𝜎 𝑟 }.

We present our rule in a compact form:

𝑡 = 𝜎 :: 𝑡 ′ Γ ⊢ 𝑒 ⊲ 𝑟 𝜕𝑡 (splitSuffix𝜎 𝑟 ) ≡ ∅
Γ ⊢ 𝑡 in 𝑒 ⊲ false

𝜏-infix-false

To show that 𝑡 is always an infix, it suffices to show that 𝑡 is always a prefix of splitSuffix𝜎 𝑟 ,
via prefix

∀
𝑡 as done in 𝜏-prefix-true, assuming that 𝜎 always exists. For this side condition, we
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introduce a simple procedure have∀𝜎 𝑟 to test if 𝜎 is a common character for all strings in 𝑟 :

have
∀
𝜎 ∅ � false

have
∀
𝜎 𝜀 � false

have
∀
𝜎 𝐶 � if 𝐶 = {𝜎} then ⊤ else false

have
∀
𝜎 (𝑟1 ++ 𝑟2) � have

∀
𝜎 𝑟1 ∨ have∀𝜎 𝑟2

have
∀
𝜎 (𝑟1 ∪ 𝑟2) � have

∀
𝜎 𝑟1 ∧ have∀𝜎 𝑟2

have
∀
𝜎 (𝑟 ∗) � true

Lemma 4.4. If have∀𝜎 𝑟 , then 𝜎 ∈ 𝑠 for any 𝑠 ∈ 𝑟 .

Finally we present a sound rule determining that 𝑡 is an infix of 𝑒:

𝑡 = 𝜎 :: 𝑡 ′ Γ ⊢ 𝑒 ⊲ 𝑟 have
∀
𝜎 𝑟 prefix

∀
𝑡 (splitSuffix𝜎 𝑟 )

Γ ⊢ 𝑡 in 𝑒 ⊲ true
𝜏-infix-true

4.2 Char-At and Substring

The char-at operation can be desugared into more basic substring operations: 𝑠 [𝑖] = 𝑠 [: 𝑖] [1 :]. To
define rules for substring, which itself can be decomposed into drop and take operations, we first
define two basic operations that abstract over the drop and take operations under restricted forms
of indices (§4.2.1), and then generalize them to substring (§4.2.2).

4.2.1 Two basic operations. An abstract index 𝜅 is one of the following:

• −→𝑘 (𝑘 ≥ 0): an absolute position counting from left to right;
• ←−𝑘 (𝑘 ≥ 0): the reversed version of the above that counts from right to left;←−1 is the right-most
index;←−0 marks the end of the string;
• @𝑡 : a relative position at the first occurrence of the constant pattern 𝑡 .

We give semantic interpretation J𝜅K𝑠 that concretizes 𝜅 to a concrete index of a given string 𝑠:

J
−→
𝑘 K𝑠 � 𝑘 J

←−
𝑘 K𝑠 � |𝑠 | − 𝑘 J@𝑡K𝑠 � 𝑠 .find (𝑡)

Our purpose is to define abstract operations dropI𝜅 𝑟 and takeI𝜅 𝑟 that overapproximate 𝑠 .drop(𝑛)
and 𝑠 .take(𝑛) when 𝑠 ∈ 𝑟 and J𝜅K𝑠 = 𝑛.

Operations under absolute positions. We start by defining the dual version of take1 (defined in
§4.1.1) that overapproximates the drop-one-character operation:

drop1∅ � 𝜀

drop1 𝜀 � 𝜀

drop1𝐶 � 𝜀

drop1(𝑟1 ++ 𝑟2) � (drop1 𝑟1 ++ 𝑟2) ∪ (if 𝜈 (𝑟1) then drop1 𝑟2 else ∅)
drop1(𝑟1 ∪ 𝑟2) � drop1 𝑟1 ∪ drop1 𝑟2

drop1(𝑟 ∗) � (drop1 𝑟 ++ 𝑟 ∗) ∪ 𝜀
This is indeed an analogue to 𝜕𝜎𝑟 , but with two differences: (a) any character can be consumed, thus
no need to check 𝜎 ∈ 𝐶; (b) this operation does not return ∅ but 𝜀 instead, as the drop operation
returns [] if no characters are left.

Lemma 4.5. If 𝑠 ∈ 𝑟 , then 𝑠 .drop(1) ∈ drop1 𝑟 .
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Just like one can extend 𝜕𝜎𝑟 to 𝜕𝑡𝑟 , we extend drop1 to drop𝑛 for 𝑛 ≥ 0 via chaining, which
overapproximates the drop operation:

drop0 𝑟 � 𝑟

drop𝑛 𝑟 � drop𝑛−1 (drop1 𝑟 )

Lemma 4.6. If 𝑠 ∈ 𝑟 , then 𝑠 .drop(𝑛) ∈ drop𝑛 𝑟 .

We have defined the take1 operation in §4.1.1. Similarly, we extend it to take𝑛 for 𝑛 ≥ 0 via
chaining, which overapproximates the take operation:

take0 𝑟 � 𝜀

take𝑛 𝑟 � take1 𝑟 ++ take𝑛−1 (drop1 𝑟 )

Lemma 4.7. If 𝑠 ∈ 𝑟 , then 𝑠 .take(𝑛) ∈ take𝑛 𝑟 .

With reverse, we complete the first part definition of the two basic operations:

dropI−→
𝑘
𝑟 � drop𝑘 𝑟 takeI−→

𝑘
𝑟 � take𝑘 𝑟

dropI←−
𝑘
𝑟 � take𝑘 𝑟

−1 −1
takeI←−

𝑘
𝑟 � drop𝑘 𝑟

−1 −1

Operations under relative positions. Our purpose is to define abstract operations that approximate
𝑠 .drop(𝑖) and 𝑠 .take(𝑖) where 𝑖 = 𝑠 .find (𝑡). A trivial but rare case is when 𝑡 = [], it is immediate
that 𝑠 .drop(𝑖) = 𝑠 and 𝑠 .take(𝑖) = [], thus their approximations are given by 𝑟 and 𝜀.
A simple but very common case is when 𝑡 = [𝜎] (singleton). Lemma 4.3 implies that split𝜎

already gives us sound approximations, but they are imprecise: split𝜎 considers all occurrences of
𝜎 , but here 𝑖 is the first occurrence. Based on these results, we present a more precise version:

find𝜎 𝑟 � {⟨𝑟 ′1, {𝜎} ++ drop1 𝑟2⟩ | ⟨𝑟1, 𝑟2⟩ ∈ split𝜎 𝑟, 𝑟 ′1 � 𝑟1 \ {𝜎}, 𝑟 ′1 . ∅}

We denote 𝑟 \𝐶′ the exclusion of a charset 𝐶′ from 𝑟 , by propagating the exclusion of 𝐶′ (i.e., set
minus𝐶 \𝐶′) to all charsets in 𝑟 . For each result ⟨𝑟1, 𝑟2⟩ ∈ split𝜎 𝑟 , we refine 𝑟1 to exclude 𝜎 as 𝑟 ′1, so
that 𝑖 will become the first occurrence, as 𝜎 does not occur in 𝑟 ′1. If the refinement leads to an empty
language, i.e., 𝑟 ′1 ≡ ∅, this indicates there is no chance 𝑖 will become the first occurrence, thus we
prune this case from the output. This operation covers all possible splits at the first occurrence of 𝜎 :

Lemma 4.8. Let 𝑠 ∈ 𝑟 . If 𝑠 .find (𝜎) = 𝑖 and 𝑖 ≥ 0, then there exist ⟨𝑟1, 𝑟2⟩ ∈ find𝜎 𝑟 such that

𝑠 [: 𝑖] ∈ 𝑟1 and 𝑠 [𝑖 :] ∈ 𝑟2.

The needed approximations are given by taking the (big) union of all 𝑟2s and 𝑟1s:

findSuffix𝜎 𝑟 �
⋃
{𝑟2 | ⟨𝑟1, 𝑟2⟩ ∈ find𝜎 𝑟 } findPrefix𝜎 𝑟 �

⋃
{𝑟1 | ⟨𝑟1, 𝑟2⟩ ∈ find𝜎 𝑟 }

Finally, 𝑡 = 𝜎 :: 𝑡 ′ can contain multiple characters. To generalize the above idea here, we need to
define 𝑟 \𝑡 , the exclusion of an arbitrary string 𝑡 from 𝑟 . This operation is harder and we did not find
any cheap and pleasant realization (unless the traditional regular language difference algorithm in
automata theory). In the end, we fallback to extend split𝜎 to split𝑡 where 𝑡 = 𝜎 :: 𝑡 ′:

split𝑡 𝑟 � {⟨𝑟1, {𝑡} ++ 𝑟 ′2⟩ | ⟨𝑟1, 𝑟2⟩ ∈ split𝜎 𝑟, 𝑟 ′2 � 𝜕𝑡𝑟2, 𝑟
′
2 . ∅}

Likewise, the needed approximations are given by taking the (big) union of all 𝑟2s and 𝑟1s:

splitSuffix𝑡 𝑟 �
⋃
{𝑟2 | ⟨𝑟1, 𝑟2⟩ ∈ split𝑡 𝑟 } splitPrefix𝑡 𝑟 �

⋃
{𝑟1 | ⟨𝑟1, 𝑟2⟩ ∈ split𝑡 𝑟 }
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So far, we have completed the missing part of defining the two basic operations:

dropI@[ ] 𝑟 � 𝑟 takeI@[ ] 𝑟 � 𝜀

dropI@[𝜎 ] 𝑟 � findSuffix𝜎 𝑟 takeI@[𝜎 ] 𝑟 � findPrefix𝜎 𝑟

dropI@𝑡 𝑟 � splitSuffix𝑡 𝑟 takeI@𝑡 𝑟 � splitPrefix𝑡 𝑟

Rules. The two basic operations give inference rules for 𝑒.drop(𝑒𝑛) and 𝑒.take(𝑒𝑛) if their indices
𝑒𝑛 can be overapproximated by some 𝜅:

Γ ⊢ 𝑒 ⊲ 𝑟 Γ ⇒ 0 ≤ 𝑒𝑛 = J𝜅K𝑒
Γ ⊢ 𝑒.drop(𝑒𝑛) ⊲ dropI𝜅 𝑟

𝜏-drop-𝜅
Γ ⊢ 𝑒 ⊲ 𝑟 Γ ⇒ 0 ≤ 𝑒𝑛 = J𝜅K𝑒

Γ ⊢ 𝑒.take(𝑒𝑛) ⊲ takeI𝜅 𝑟
𝜏-take-𝜅

4.2.2 Rules for substring. Noticing that the substring operation can be decomposed into a drop
and a take operation (in either order), our idea is to define an abstract operation substr(𝑟, 𝜅𝑖 , 𝜅 𝑗 ) in
terms of the two basic operations defined in §4.2.1, as the following rule:

Γ ⊢ 𝑒 ⊲ 𝑟 Γ ⇒ 0 ≤ 𝑒𝑖 < 𝑒 𝑗 ∧ 𝑒𝑖 = J𝜅𝑖K𝑒 ∧ 𝑒 𝑗 = J𝜅 𝑗 K𝑒
Γ ⊢ 𝑒 [𝑒𝑖 : 𝑒 𝑗 ] ⊲ substr(𝑟, 𝜅𝑖 , 𝜅 𝑗 )

𝜏-substr-𝜅

We assume that indices 𝑒𝑖 and 𝑒 𝑗 are overapproximated by some 𝜅𝑖 and 𝜅 𝑗 . Depending on their
constructors, the inferred type substr(𝑟, 𝜅𝑖 , 𝜅 𝑗 ) is given by the 3 × 3 table below, which includes a
case when this operation is “undefined”:

𝜅𝑖 =
−→
𝑘𝑖 𝜅𝑖 =

←−
𝑘𝑖 𝜅𝑖 = @𝑡𝑖

𝜅 𝑗 =
−→
𝑘 𝑗 dropI𝜅𝑖 (take𝑘 𝑗

𝑟 ) undefined dropI𝜅𝑖 (take𝑘 𝑗
𝑟 )

𝜅 𝑗 =
←−
𝑘 𝑗

takeI𝜅 𝑗
(dropI𝜅𝑖 𝑟 )

𝜅 𝑗 = @𝑡 𝑗

The first row “𝜅 𝑗 =
−→
𝑘 𝑗 ” shows the idea of decomposing 𝑠 [𝑖 : 𝑗] as 𝑠 [: 𝑗] [𝑖 :] (take and then drop).

To ensure the suggested type dropI𝜅𝑖 (take𝑘 𝑗
𝑟 ) is an overapproximation of 𝑠 [: 𝑗] [𝑖 :], a crucial

property we need is that the semantics of 𝜅𝑖 should be preserved after taking 𝑗 characters. The
following lemma tells when the property holds:

Lemma 4.9. Let 𝜅 be an abstract index constructed by
−→· or @·. For any 𝑛 > J𝜅K𝑠 , if J𝜅K𝑠 ≥ 0, then

J𝜅K𝑠 [:𝑛] = J𝜅K𝑠 .

We see that except when 𝜅𝑖 =
←−
𝑘𝑖 , the suggested type dropI𝜅𝑖 (take𝑘 𝑗

𝑟 ) is sound. The case 𝜅𝑖 =
←−
𝑘𝑖

indicates a weird and rarely seen means of extracting substring such as 𝑠 [|𝑠 | − 1 : 2], where we do
not define a rule.
The last two rows show the idea of decomposing 𝑠 [𝑖 : 𝑗] as 𝑠 [𝑖 :] [: 𝑗 − 𝑖] (drop and then take).

To ensure the suggested type takeI𝜅 𝑗
(dropI𝜅𝑖 𝑟 ) is an overapproximation of 𝑠 [: 𝑖] [: 𝑗 − 𝑖], a crucial

property we need is that the semantics of 𝜅 𝑗 should be properly shifted after dropping 𝑖 characters:

Lemma 4.10. Let 𝜅 be an abstract index constructed by
←−· or @·. For any 0 ≤ 𝑛 < J𝜅K𝑠 , we have

J𝜅K𝑠 [𝑛:] = J𝜅K𝑠 − 𝑛.

This lemma implies that the suggested type takeI𝜅 𝑗
(dropI𝜅𝑖 𝑟 ) is sound.
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Sometimes, developers also shift a relative position such as 𝑠 [𝑠 .find (𝜎) +1 :] and 𝑠 [: 𝑠 .find (𝜎)−1].
We deal with these cases by decoupling such shifts (+1, −1) by simplification, as demonstrated in
§2.2. The simplification rules and their soundness are shown in the following lemma:

Lemma 4.11. Let 𝑖, 𝑗, 𝑘 ≥ 0:

𝑘 ≤ 𝑖 ∧ 𝑖 ≤ 𝑗 ≤ |𝑠 | ⇒ 𝑠 [𝑖 − 𝑘 : 𝑗] = (𝑠 [: 𝑖]−1 [: 𝑘])−1 ++ 𝑠 [𝑖 : 𝑗]
𝑠 [𝑖 + 𝑘 : 𝑗] = 𝑠 [𝑖 : 𝑗] [𝑘 :]

𝑖 ≤ 𝑗 − 𝑘 ∧ 𝑗 ≤ |𝑠 | ⇒ 𝑠 [𝑖 : 𝑗 − 𝑘] = (𝑠 [𝑖 : 𝑗]−1 [𝑘 :])−1

𝑖 ≤ 𝑗 ⇒ 𝑠 [𝑖 : 𝑗 + 𝑘] = 𝑠 [𝑖 : 𝑗] ++ 𝑠 [ 𝑗 :] [: 𝑘]

So far, our rules assume that the values of the indices are determined. We finally present a rule
that can apply to nondetermined indices:

Γ ⊢ 𝑒 ⊲ 𝑟 Γ ⇒ 0 ≤ 𝑒𝑖 < 𝑒 𝑗 ∧ 𝑒𝑖 ≥ J𝜅1K𝑒 ∧ 𝑒 𝑗 ≤ J𝜅2K𝑒
Γ ⊢ 𝑒 [𝑒𝑖 : 𝑒 𝑗 ] ⊲ 𝛼 (substr(𝑟, 𝜅1, 𝜅2))+

𝜏-substr-𝛼

We find 𝜅1 and 𝜅2 as the lower bound of 𝑒𝑖 and the upper bound of 𝑒 𝑗 . The abstract operation
substr(𝑟, 𝜅1, 𝜅2) approximates the longest substring we can extract by the index range [𝑒𝑖 : 𝑒 𝑗 ].
Hence any 𝑒 [𝑒𝑖 : 𝑒 𝑗 ] must only contain characters occurred in substr(𝑟, 𝜅1, 𝜅2). Thus we approximate
𝑒 [𝑒𝑖 : 𝑒 𝑗 ] by the universal language generated from them, i.e., 𝛼 (substr(𝑟, 𝜅1, 𝜅2))+. This rule deals
with, for example, the VC 𝜑3 shown in §2.1.

4.3 Length and Find

We lift the string length operation to an abstract operation that approximates all possible lengths
as integer intervals:

|∅|# � [0, 0]
|𝜀 |# � [0, 0]
|𝐶 |# � [1, 1]

|𝑟1 ++ 𝑟2 |# � |𝑟1 |# + |𝑟2 |#

|𝑟1 ∪ 𝑟2 |# � |𝑟1 |# ⊔ |𝑟2 |#

|𝑟 ∗ |# � [0,∞]
Interval addition is defined as [𝑎, 𝑏] + [𝑐, 𝑑] = [𝑎+𝑐, 𝑏 +𝑑]. Interval join is defined as [𝑎, 𝑏] ⊔ [𝑐, 𝑑] =
[min{𝑎, 𝑐},max{𝑏, 𝑑}].

Lemma 4.12. If 𝑠 ∈ 𝑟 , then |𝑠 | ∈ |𝑟 |#.

With |𝑟 |#, we define rules for length and find operations:
Γ ⊢ 𝑒 ⊲ 𝑟

Γ ⊢ |𝑒 | ⊲ |𝑟 |#
𝜏-length

Γ ⊢ 𝑒 ⊲ 𝑟
Γ ⊢ 𝑒.find (𝑡) ⊲ | takeI@𝑡 𝑟 |# ⊔ [−1,−1]

𝜏-find

In the rule 𝜏-find, if we are sure that 𝑡 must exist in 𝑒 , then we will exclude [−1,−1] in the inferred
type.

5 Type Narrowing for Higher Precision

FLAT-Checker applies type narrowing to improve the precision of type inference. As demonstrated
in §2.3, type narrowing is the key to discharge the two VCs: without it, the inferred type bool

for 'a' in 𝑠 would be too coarse. We formulate the type narrowing problem as follows: Let 𝑟 be an
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original regular language type and 𝑝 : S → B be a predicate over strings. Find a subtype 𝑟 ′ ⊆ 𝑟

such that it also overapproximates 𝑝 .
Here we consider specific predicates which we can do efficient type narrowing. We denote a

narrowing rule by 𝑟
𝑝
↩−→ 𝑟 ′. It is said sound if ∀𝑠, 𝑠 ∈ 𝑟 ∧ 𝑝 (𝑠) ⇒ 𝑠 ∈ 𝑟 ′. We integrate type narrowing

into our type inference system by the following type inference rule:

(𝑒 ∈ 𝑟 ) ∈ Γ Γ ⇒ 𝑝 (𝑒) 𝑟
𝑝
↩−→ 𝑟 ′

Γ ⊢ 𝑒 ⊲ 𝑟 ′
𝜏-narrow

This rule is sound as long as 𝑟
𝑝
↩−→ 𝑟 ′ is sound.

In the rest of this section, we will present selected narrowing rules used by FLAT-Checker. Their
soundnesses have been proved in Rocq.

Length comparison. We first look into predicates that compare the length of a string with a
constant integer 𝑘 ≥ 0. We define an operation resByLen𝐼 𝑟 for restricting 𝑟 by a length interval 𝐼 :

resByLen𝐼 ∅ � ∅
resByLen𝐼 𝜀 � if 0 ∈ 𝐼 then 𝜀 else ∅
resByLen𝐼 𝐶 � if 1 ∈ 𝐼 then𝐶 else ∅

resByLen𝐼 (𝑟1 ++ 𝑟2) � if |𝑟1 |# = [𝑘, 𝑘] then 𝑟1 ++ (resByLen𝐼−𝑘 𝑟2)
else if |𝑟2 |# = [𝑘, 𝑘] then (resByLen𝐼−𝑘 𝑟1) ++ 𝑟2
else 𝑟1 ++ 𝑟2

resByLen𝐼 (𝑟1 ∪ 𝑟2) � resByLen𝐼 𝑟1 ∪ resByLen𝐼 𝑟2

resByLen𝐼 (𝑟 ∗) � if |𝑟 |# = [𝑘, 𝑘] then let[𝑚,𝑀] � 𝐼

𝑘
in 𝑟 {𝑚,𝑀 }

else if 0 ∉ 𝐼 then 𝑟+ else 𝑟 ∗

We make several overapproximations here. For 𝑟1 ++ 𝑟2, if one side has constant length, say 𝑘 , we
continue restricting the other side by the leftover length interval 𝐼−𝑘 where [𝑎, 𝑏]−𝑘 � [𝑎−𝑘,𝑏−𝑘].
Otherwise, there may exist too many possibilities to split 𝐼 into two parts, thus we give up. We use
the same strategy for 𝑟 ∗: if 𝑟 has constant length, say 𝑘 > 0, applying a kind of division 𝐼

𝑘
gives an

interval that approximates the repeating times of 𝑟 . This division is defined as [𝑎,𝑏 ]
𝑘
� [⌈𝑎

𝑘
⌉, ⌊ 𝑏

𝑘
⌋].

Otherwise, we only check, if 0 is not included in 𝐼 , meaning [] is not allowed, then we will narrow
down 𝑟 ∗ to 𝑟+.

Lemma 5.1. Let 𝑠 ∈ 𝑟 . Let 𝐼 be an interval. If |𝑠 | ∈ 𝐼 , then 𝑠 ∈ resByLen𝐼 𝑟 .
We present narrowing rules where the comparison operators are converted to intervals:

𝑟
𝜆𝑠, |𝑠 |=𝑘
↩−−−−−→ resByLen[𝑘,𝑘 ] 𝑟 𝑟

𝜆𝑠, |𝑠 |≠𝑘
↩−−−−−→ (resByLen[0,𝑘−1] 𝑟 ) ∪ (resByLen[𝑘+1,∞] 𝑟 )

𝑟
𝜆𝑠, |𝑠 | ≤𝑘
↩−−−−−−→ resByLen[0,𝑘 ] 𝑟 𝑟

𝜆𝑠, |𝑠 | ≥𝑘
↩−−−−−−→ resByLen[𝑘,∞] 𝑟

𝑟
𝜆𝑠, |𝑠 |<𝑘
↩−−−−−−→ resByLen[0,𝑘−1] 𝑟 𝑟

𝜆𝑠, |𝑠 |>𝑘
↩−−−−−−→ resByLen[𝑘+1,∞] 𝑟

Similarly, we present a group of narrowing rules for the comparison between an index identified
by the find operation and a constant integer, such as:

𝑟
𝜆𝑠,𝑠.find (𝜎 )≥𝑘
↩−−−−−−−−−−−→ resByLen[𝑘,∞] (findPrefix𝜎 𝑟 ) ++ findSuffix𝜎 𝑟
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Char-at equations. We then look into predicates that test chars at specific absolute positions like
𝑠 [𝑖] = 𝜎 . Our idea is to filter out cases when 𝑠 [𝑖] ∩ {𝜎} = ∅. For this, we need an abstract split
operation that breaks 𝑟 into a set of triples, where each ⟨𝑟1,𝐶, 𝑟2⟩ consists of 𝑟1 that approximates
𝑠 [: 𝑖], 𝐶 that approximates 𝑠 [𝑖], and 𝑟2 that approximates 𝑠 [𝑖 + 1 :]. We first define splitAt0 𝑟 that
splits 𝑟 into a set of pairs, where each ⟨𝐶, 𝑟 ⟩ consists of 𝐶 that approximations the head character
of 𝑠 , and 𝑟 that approximates the tails of 𝑠:

splitAt0∅ � ∅
splitAt0 𝜀 � ∅
splitAt0𝐶 � {⟨𝐶, 𝜀⟩}

splitAt0(𝑟1 ++ 𝑟2) � {⟨𝐶, 𝑟 ′ ++ 𝑟2⟩ | ⟨𝐶, 𝑟 ′⟩ ∈ splitAt0 𝑟1} ∪ (if 𝜈 (𝑟1) then splitAt0 𝑟2 else ∅)
splitAt0(𝑟1 ∪ 𝑟2) � splitAt0 𝑟1 ∪ splitAt0 𝑟2

splitAt0(𝑟 ∗) � {⟨𝐶, 𝑟 ′ ++ 𝑟 ∗⟩ | ⟨𝐶, 𝑟 ′⟩ ∈ splitAt0 𝑟 }

We extend this basic operation to what we need:

splitAt0 𝑟 � {⟨𝜀,𝐶, 𝑟 ′⟩ | ⟨𝐶, 𝑟 ′⟩ ∈ splitAt0 𝑟1}
splitAt𝑛 𝑟 � {⟨𝐶′ ++ 𝑟1,𝐶, 𝑟2⟩ | ⟨𝐶′, 𝑟 ′⟩ ∈ splitAt0 𝑟1, ⟨𝑟1,𝐶, 𝑟2⟩ ∈ splitAt𝑛−1 𝑟 ′}

Lemma 5.2. Let 𝑠 ∈ 𝑟 . If 𝑠 [𝑖] = 𝜎 , then there exists ⟨𝑟1,𝐶, 𝑟2⟩ ∈ splitAt𝑖 𝑟 such that 𝜎 ∈ 𝐶 , 𝑠 [: 𝑖] ∈ 𝑟1
and 𝑠 [𝑖 + 1 :] ∈ 𝑟2.

We define resByCharAt𝑖,𝐶 𝑟 for restricting 𝑟 by 𝜆𝑠, 𝑠 [𝑖] ∈ 𝐶:

resByCharAt𝑖,𝐶 𝑟 �
⋃
{𝑟1 ++ 𝐶′′ ++ 𝑟2 | ⟨𝑟1,𝐶, 𝑟2⟩ ∈ splitAt𝑖 𝑟,𝐶′′ � 𝐶′ ∩𝐶,𝐶′′ . ∅}

We present narrowing rules where the equality/inequality is converted to a charset, and consider
cases of right-to-left indices:

𝑟
𝜆𝑠,𝑠 [𝑖 ]=𝜎
↩−−−−−−−→ resByCharAt𝑖,{𝜎 } 𝑟 𝑟

𝜆𝑠,𝑠 [𝑖 ]≠𝜎
↩−−−−−−−→ resByCharAt𝑖,Σ\{𝜎 } 𝑟

𝑟
𝜆𝑠,𝑠 [ |𝑠 |−𝑖 ]=𝜎
↩−−−−−−−−−−→ resByCharAt𝑖−1,{𝜎 } 𝑟

−1 −1
𝑟

𝜆𝑠,𝑠 [ |𝑠 |−𝑖 ]≠𝜎
↩−−−−−−−−−−→ resByCharAt𝑖−1,Σ\{𝜎 } 𝑟

−1 −1

Char occurrence test. Finally, we present narrowing rules on predicates that tell whether a specific
character occurs in a string, based on operations we have defined in §4:

𝑟
𝜆𝑠,𝜎 in𝑠
↩−−−−−→ findPrefix𝜎 𝑟 ++ findSuffix𝜎 𝑟 𝑟

𝜆𝑠,¬(𝜎 in𝑠 )
↩−−−−−−−−→ 𝑟 \ {𝜎}

Remarks. Let 𝑟
𝑝
↩−→ 𝑟 ′ be a sound narrowing rule. The narrowed type 𝑟 ′ is an overapproximation

of the intersection of 𝑟 and the language implied by 𝑝 , i.e., 𝑟 ′ ⊇ 𝑟 ∩ {𝑠 : S | 𝑝 (𝑠)}. Computing
language intersection is in general exponential. For specific predicates, our type narrowing rules
provide imprecise but cheap ways to compute intersection.

Type narrowing also has the potential to simplify refinement types in our framework. In principle
we only allow string types to be refined by regexes. But since all type annotations will be translated
into VCs, it is possible to extend our frontend to accept types refined by SMT logical formulas
(as in Liquid Typing). For example, the refinement of the type {𝑠 : S | 𝑠 ∈ r'a*' ∧ |𝑠 | > 0} (or,
{𝑠 : r'a*' | |𝑠 | > 0}) is translated as 𝑠 ∈ r'a*' ∧ |𝑠 | > 0. By type narrowing, r'a*' is narrowed
down to r'a+' by the predicate 𝜆𝑠, |𝑠 | > 0.
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6 Rocq Mechanization

In the Rocq interactive theorem prover, first, we define strings with their operations, regexes with
their operations, abstract and narrowing operations presented in §3, §4, and §5. In particular, we
define string operations in terms of basic list operations, and prove they are consistent with the
usual semantics. Then, we prove the lemmas presented in those sections, from which we finally
show the soundness of our type inference and narrowing rules, in a shallow-embedded manner. For
instance, to show the soundness of the rule 𝜏-concat:

(Γ ⇒ 𝑒1 ∈ 𝑟1) ∧ (Γ ⇒ 𝑒2 ∈ 𝑟2) ⇒ (Γ ⇒ 𝑒1 ++ 𝑒2 ∈ 𝑟1 ++ 𝑟2),

We show the following theorem:

𝑠1 ∈ 𝑟1 ⇒ 𝑠2 ∈ 𝑟2 ⇒ 𝑠1 ++ 𝑠2 ∈ 𝑟1 ++ 𝑟2,

where we shallow-embed core terms as string operations and elide the proof context Γ in a logically
equivalent way.

7 Evaluation

We have implemented FLAT-Checker with a mixture of Python 3.13 and Scala 3.6. We rely on
Python’s builtin ast module to parse Python sources. We implement annotation processing, VC
generation, type inference, and type narrowing in Scala. We use cvc5 (version 1.3.0) [Barbosa et al.
2022] as the backend SMT solver and invoke it through its Java bindings. Our prototype implemen-
tation is available at (blinded for review): https://anonymous.4open.science/r/flat-checker/. This
repository also includes a full replication package for our evaluation.

7.1 Experimental Setting

We evaluated FLAT-Checker on the benchmark dataset [Schröder and Cito 2025a] of the Panini
[Schröder and Cito 2025b] grammar inference system. This dataset contains 204 ad hoc parsers
written in Python, together with golden grammars (i.e., ground truth) in the form of POSIX regular
expressions describing the exact input that these parsers accept. The parsers in the dataset are
structured into three categories based on the structural features of the Python programs: Straight-
Line Programs exhibit only linear execution flow without branching; Programs with Conditionals

incorporate conditional statements to make decisions based in input characteristics; and Programs

with Loops contain iterative constructs alongside conditional statements. We have augmented the
parsers in this dataset by adding loop invariant annotations where necessary (cf. §2.3).
To be able to compare FLAT-Checker with traditional SMT and string constraint solvers, we

extracted the verification conditions generated by FLAT-Checker into standalone SMT-LIB queries.
We compared FLAT-Checker with cvc5 (version 1.3.0) [Barbosa et al. 2022], Z3 (version 4.15.1)
[de Moura and Bjørner 2008], Z3-Noodler-Pos [Chen et al. 2025], and OSTRICH2 [Hague et al.
2025]. All experiments were run on a 3 GHz 6-Core Intel iMac, with 24 GB RAM. All solvers were
given a 60 second timeout and no memory limit.

7.2 Performance Results

The results of evaluating FLAT-Checker on the Panini benchmark dataset are shown in Table 2.
FLAT-Checker was able to verify all 204 ad hoc parsers against their golden grammars, i.e., type-
checked each parser program with its golden grammar regex as the input type. The average
time for type checking a program was about 1 second end-to-end wall-clock time, including all
overheads (such as parsing the input program and calling an external SMT solver, if necessary).
Of the 966 verification conditions generated during type checking (across all programs), almost
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Table 2. Results of evaluating FLAT-Checker on the Panini benchmark dataset.

Discharged VCs
Programs Invariants Trivial SMT Lemmas Time (s)

Straight-Line 89 0 0 21 229 0.78 ±0.05
+ Conditionals 51 0 11 55 187 0.82 ±0.06
+ Loops 64 45 45 227 191 1.43 ±4.19

204 45 56 303 607 1.00 ±2.36

Table 3. Comparison of FLAT-Checker with SMT/String solvers. We report the average verification time for

VCs without timeouts, as well as the total time spent verifying all programs with timeouts.

VCs Programs

Valid Invalid Timeout Time (ms) Verified Time

FLAT-Checker 966 0 0 53.09 ±814.02 203 51.29 s
OSTRICH2 961 0 5 1107.21 ±1394.51 200 22.76 min
Z3-Noodler-Pos 957 8 1 28.03 ±27.25 198 1.45 min
cvc5 910 0 56 13.17 ±24.74 159 56.21 min
Z3 866 0 100 11.34 ±4.88 152 1.67 h

two thirds (607) were complex enough to require lemma synthesis; the rest could be discharged
without lemmas (56 trivial cases and 303 solvable using an off-the-shelf SMT solver).

Of the 204 programs in the dataset, 24 programs required loop invariants. On average, we need
two annotations for each of these programs, resulting in 45 user-provided invariant annotations in
total. A typical invariant is inv(0 <= i <= len(s)) andmost invariants take the form 𝑐1 ≤ 𝑖 ≤ |𝑠 |+𝑐2.
We hope to reduce this annotation burden further by automatically inferring more of these kinds
of loop invariants in the future.

7.3 Comparison with SMT Solvers

Table 3 compares FLAT-Checker with state-of-the-art SMT and string constraint solvers. For an
SMT solver to verify a parser program, it has to validate all verification conditions extracted from
that program. In total, there are 966 VCs for 203 of the benchmark programs; one program is trivial
enough to not yield any VCs.

Only FLAT-Checker is able to validate all VCs and verify all programs in the Panini benchmark
dataset. It does so in under a minute of pure verification time.

The traditional solvers Z3 and cvc5, while very fast at discharging most VCs, time out for many
cases involving simple regular string constraints similar to the VC 𝜑3 discussed in §2.1. Z3 is only
able to validate 866 VCs (out of 966) and verify 152 programs (out of 203); due to timeouts, this
takes more than one and a half hours. cvc5 is able to validate 910 VCs, timing out half as much as
Z3, but this also only verifies 159 programs, taking almost one hour.

Z3-Noodler-Pos is a very recent string solver that explicitly aims to address the issues surround-
ing position string constraints, which include problems such as our r'a*' example. It does fairly
well on the Panini benchmark, with only one timeout and otherwise very fast verification times.
However, we encountered some soundness issues, where Z3-Noodler-Pos incorrectly determined
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8 VCs to be invalid (reporting sat when they should be unsat, with a clearly incorrect model).
Thus, Z3-Noodler-Pos is only able to correctly verify 198 out of the 203 parser programs.

OSTRICH2, the latest evolution of the OSTRICH string solver [Chen et al. 2019], can verify
almost all programs in the dataset, but is by far the slowest of all the solvers. While it only exhibited
5 timeouts—successfully validating 961 VCs and verifying 200 programs—it took over 20 minutes
to verify all programs. OSTRICH2 takes the longest amount of time to validate any single VC and
is more than 20× slower than FLAT-Checker.

Unsoundness in Z3-Noodler-Pos. We have unconvered 8 instances of unsound behaviour in
Z3-Noodler-Pos (see our anonymous repository for more details). For example, the rather simple
verification condition

𝜑161.1 : 𝑠 ∈ r'[^a]?'⇒ (𝑠 = '' ∨ 𝑠 ≠ 'a') ∧ |𝑠 | ≤ 1

is rejected with the spurious counterexample 𝑠 = 'a'. All other solvers are able to correctly validate
this VC, including Z3. We do not know why Z3-Noodler-Pos behaves in this way, as there is no
apparent pattern to the VCs for which it produces spurious counterexamples.

8 Related Work

8.1 Abstract Interpretation of strings

Various abstract domains have been invented to perform static analysis of strings. Some capture par-
tial information of strings such as the set of the characters that must/may occur, the prefixes/suffixes,
the length intervals, and the hash values in simple domains: they are used for great efficiency and
scalability [Amadini et al. 2017b; Costantini et al. 2011]. Some capture more structural information
through regex-like domains, such as bricks [Costantini et al. 2011] and dashed strings [Amadini
et al. 2018a,b, 2017a], but they are still fragments of regexes. The most precise domain is the entire
class of regular languages: Arceri et al. [2020] approximate strings as finite state automata over
an alphabet of characters; Negrini et al. [2021] extend this idea to automata over an alphabet of
strings.

Although automata and regexes are semantic equivalences, automata-based abstract interpreta-
tion is criticized [Søndergaard 2021] to have significant issues due to size explosion of automata
minimization and other operations. We use regexes as our abstract domains and design a couple of
efficient abstract semantics for string operations as the foundations of our type inference rules.
Our abstract semantics for the substring operation is more expressive than Arceri et al. [2020] and
Negrini et al. [2021]: we consider relative positions generated by find operations while they both
do not.
To apply automata-based abstract interpretation, one needs to define the widening operator

[Arceri et al. 2020; Bartzis and Bultan 2004; Choi et al. 2006; Negrini et al. 2021]. This is known
to be a difficult art, especially for highly expressive domains like automata [Søndergaard 2021].
Fortunately, this hard problem is irrelevant to us as we rely on user-specified loop invariants as in
the traditional Floyd–Hoare logic style.
Moreover, there are studies on how to combine a large number of domains via a reference

domain as a medium for information exchange [Amadini et al. 2018c], and how to track relational
information between string variables [Arceri et al. 2022].

8.2 String Types

More than a decade ago, the concept of regular expression types were invented in text processing lan-

guages [Hosoya et al. 2000; Tabuchi et al. 2002] and extended for context-free grammars [Thiemann
2005].
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In recent years, researchers have noticed that the string type in many general-purpose pro-
gramming languages is too coarse: it neglects the latent structure of strings. Kelly et al. [2019]
define a special SafeStrings interface in TypeScript. Programmers subclass it to define new types for
particular sets of strings with specific latent structure, such as XML and email addresses, expressed
by grammars. A follow-up work, June [Bruce et al. 2023], enables automated test generation on
top of SafeStrings via Java annotations, including built-in annotations that mark a string variable to
be delimited strings, file paths, email addresses, dates, etc. Technically speaking, the SafeStrings
types are not subtypes of the string type in the type systems of their host languages. A more recent
framework FLAT [Zhu and Zeller 2025] tackles this problem through a refinement type system
that is somewhat similar to Liquid Typing, but allows to refine string types by formal languages
including regular and context-free languages, and logical predicates as well which indeed considers
context-sensitive languages. However, all of these frameworks tests or validates string types at
runtime. Our FLAT-Checker, based on the idea of FLAT, takes the first step towards static type
checking at compile time.

8.3 Liquid Type Systems

Modern Liquid Type systems [Gamboa et al. 2023; Jhala 2014; Jhala and Vazou 2020; Lehmann
et al. 2023; Vekris et al. 2016] enrich existing type systems with logical predicates that allows
users to pose semantic constraints of values. They require the predicates to stay in decidable SMT
fragments, such as linear arithmetic over integers, fixed-size bit vectors, quantifier-free equality
with uninterpreted functions, etc., so that they can fully rely on mature SMT solvers to efficiently
discharge VCs generated through type checking. Compare with dependent types, they require
lighter manual annotations [Rondon et al. 2008]. As discussed in the end of §5, FLAT-Checker can
be extended to support types refined by SMT formulae.
Liquid Type systems usually do not offer loop invariant annotations but rely on Horn clause

constraint solving [Flanagan and Leino 2001] to synthesize them [Jhala 2014; Jhala and Vazou 2020;
Lehmann et al. 2023]. Generally speaking, loop invariant synthesis is hard and when it comes to
loops that manipulate strings, we have no idea if existing techniques generalize. Thus, for the
maximal flexibility and expressiveness, we make the choice of asking users to specify loop invariants
in FLAT-Checker, following the tradition of Floyd-Hoare logic-based program verification.

9 Conclusion and Future Work

This paper presents FLAT-Checker, the first static type checker for regular language types in
Python. It can be used as a lightweight program verifier for ensuring correct contents of string
types throughout the entire program code, notably detecting possible violations of string operations
and potential attack surfaces such as SQL injections or other third-party string manipulations.
As our evaluation results show, FLAT-Checker can effectively and efficiently type-check ad hoc
parsers, surpassing state-of-the-art SMT string solvers in terms of provability and efficiency.

Our future work on FLAT-Checker will focus on extension and generalization:
More string operations. We want to support more string operations and more Python lan-

guage features, so that we can apply FLAT-Checker to more complex string-manipulating
programs, including programs that handle third-party inputs.

Context-free grammars. We want generalize the abstract operations shown in §4 from
regexes to context-free grammars. With that, FLAT-Checker will be able to check (and
infer) context-free language types.

Our FLAT-Checker prototype and all experimental data are available as open source at
https://anonymous.4open.science/r/flat-checker/.
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