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Programmers regularly use strings to encode many types of data, such as Unix file paths, URLs, and email
addresses, that are conceptually different. However, existing mainstream programming languages use a unified
string type to represent them all. As a result, their type systems will keep quiet when a function requiring an
email address is instead fed an HTML text, which may cause unexceptional failures or vulnerabilities.

To let the type system distinguish such conceptually different string types, in this paper, we propose to
regard formal languages as types (FLAT), thereby restricting the set of valid strings by context-free grammars
and semantic constraints if needed. To this end, email addresses and HTML text are treated as different types.
We realize this idea in Python as a testing framework FLAT-PY. It contains user annotations, all directly
attached to the user’s code, to (1) define such language types, (2) specify pre-/post-conditions serving as
semantic oracles or contracts for functions, and (3) fuzz functions via random string inputs generated from a
language-based fuzzer. From these annotations, FLAY-PY automatically checks type correctness at runtime via
code instrumentation, and reports any detected type error as soon as possible, preventing bugs from flowing
deeply into other parts of the code. Case studies on real Python code fragments show that FLAT-PY is able to
catch logical bugs from random inputs, requiring a reasonable amount of user annotations.

CCS Concepts: • Software and its engineering → Data types and structures; Software testing and
debugging; • Theory of computation→ Grammars and context-free languages.
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1 INTRODUCTION
Processing structured data is a common task in developing various kinds of software. File system
APIs usually takes file paths as inputs to locate and operate the corresponding resources. A network
library must correctly validate and extract data fields such as a domain name from a URL or an
email address, according to their RFC standards. A server backend typically encodes and decodes
packets that are transmitted in standard data exchange formats like XML and JSON.
Ideally, values that represent file paths, URLs, email addresses, etc. should be given different

types simply because they are conceptually different, for instance, by creating different class types
in an object-oriented language or different algebraic data types in a functional language. However,
in reality, programmers use a unified string type to rule them all, which eases the design of APIs
and the exchange of data, particularly in Unix, where file paths, shell commands, and standard
input/output streams are text-based.
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However, this golden practice ignores the latent structure of strings and can introduce potential
bugs. Consider a Python function that sends a verification email to a user registered on a web
service:

def send_verif_email(email: str) -> None

A static type checker (e.g., mypy1 and pyre2) happily accepts any string as the input argument
email, including an XML string and an HTML string injected with malicious JavaScript code. Later,
those undesired inputs can lead to unpredictable behaviors and even security issues that are hard
to detect and repair.

One possible industrial solution is to perform additional input format validation through regular
expression (regex) matching, supported in many mainstream programming languages like Python’s
re library. To ensure that the input email address is valid in send_verif_email, we may attach the
following validation code at the beginning of this function:
1 import re
2 def send_verif_email(email: str) -> None:
3 pattern = re.compile(r'(?<=[^0-9a-zA-Z\!\#\$\%\&\'\*\+\-\/\=\?\^\_\`\{\|\}\~\-])' \
4 r'([a-zA-Z0-9_.-]+@[a-zA-Z0-9_.-]+(?:\.[a-zA-Z0-9]+)*\.[a-zA-Z0-9]{2,6})' \
5 r'(?=[^0-9a-zA-Z\!\#\$\%\&\'\*\+\-\/\=\?\^\_\`\{\|\}\~\-])') # regex pattern
6 assert pattern.fullmatch(email) is not None # ensure it matches the input email
7 ... # now can safely send email

The regex pattern shown in Lines 2-5 is taken from a Python library JioNLP3. It is not only
unreadable but also wrong: it both over- and under-approximates the legal email addresses as
defined in RFC 5322 [17] standard of Internet message format. For example, it will reject the
legal email address 'name/surname@example.com' (note that '/' is allowed) and accept the illegal
email address 'a"b(c)d,e:f;g<h>i[j\\k]l@example.com' (as ',' and brackets '[]' are disallowed)4.
Regex patterns like this are unreadable, unusable, and may be too complex to be correct, thus are
not reasonable options for expressing the exact intended structure of strings.

Such a regex-based input format validation approach has the following drawbacks: (1) unwieldy
validation code (Lines 3-6 shown above) has to be inserted manually, which is labor-intensive and
time-consuming; (2) regex patterns are less expressive and do not offer higher level formal language
support as in context-free grammars (CFGs); and (3) no existing language-based fuzzing technique
(e.g., [9, 21, 25]) takes (Python’s or JavaScript’s) regex patterns as inputs.

To address these three issues, in this paper, we present a more general solution from a type
system’s angle based on the idea of regarding formal languages as types (FLAT). The formal languages
we use are CFGs: they are well-defined, well-understood, and well-supported by language-based
fuzzers. Even for a regular language, a well-structured CFG with reasonable names for nonterminal
symbols is more readable than a compact yet mysterious regex pattern. Not even mention that
some languages are indeed not regular, including the RFC-standard email addresses. A CFG gives
rises to a language type whose inhabitants are restricted to the set of sentences accepted by that
grammar, hence rejected malformed inputs. Attaching additional logical constraints to CFGs, users
can express context-sensitivity such as restricting the lengths of strings in language types.
Applying FLAT, the above email address validation problem is solved in a simple way: all the

users need is to annotate the input argument email with a language type for valid email addresses,
say the FLAT built-in type RFCEmail that follows the RFC 5322 standard:

1https://mypy-lang.org
2https://pyre-check.org
3https://github.com/dongrixinyu/JioNLP/blob/e17dba0/jionlp/rule/rule_pattern.py#L43
4Both examples are taken from: https://en.wikipedia.org/wiki/Email_address#Examples.
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def send_verif_email(email: RFCEmail) -> None

No email address regex pattern needs to be specified: it is replaced by the CFG defined in RFC 5322
standard. No regex-based validation code needs to be manually inserted: FLAT will automatically
check if any input email matches the RFCEmail syntax via parsing at runtime, for each call to
send_verif_email. If, for instance, feeding an XML string or a JavaScript-injected HTML string to
this function, FLAT will report type errors at runtime. Note that this paper focuses on runtime type
checking, as it is more general and easier to implement than static type checking (which we leave
as a future direction).
Using a type-based approach, FLAT tackles several common tasks in software development in

one framework and FLAT’s automation reduces user efforts in testing:
API documentation. Conventionally, for string-typed APIs that require the inputs to have

specific formats, developers describe such requirements as comments in the API documen-
tation, which means they are invisible to type systems and can be neglected by careless
developers. In FLAT, they are now parts of the types: they are visible to the type checker and
are enforced to be fulfilled via runtime type checking.

Input validation. To make sure that the user-input strings are legal, the traditional method is
to validate them through regex matching or parsing, which can be time-consuming and error-
prone. FLAT saves API developer’s time by automatically checking the input strings against
the attached input types at runtime. Specifying a grammar is usually more intuitive and
correct than specifying a potentially complex regex pattern, or it is easier than implementing
a custom parser from scratch.

Malicious input detection. Another kind of invalid inputs are malicious inputs crafted by
attackers. Mature industry solutions exist for specific scenarios, such as prepared statements
for SQL injection and HTML sanitization for cross-site scripting (XSS). FLAT, on the other
hand, offers a general solution to detect and reject malicious inputs in under-studied scenarios.
For instance, to avoid dangerous Shell command injection like:

eval('__import__("os").system("rm -rf .")')

One may restrict the input to eval() within a secured fragment of Python expressions (e.g.,
arithmetic only) via a language type representing the desired secured fragment.

Language-based fuzzing. For functions whose input strings are all annotated with language
types, FLAT offers a convenient fuzz primitive to enable language-based fuzzing. For example,
to test the function send_verif_email against 1,000 randomly-generated email addresses, all
the developers need is a single line of code fuzz(send_verif_email, 1000). FLAT takes over
the process of translating the language types into the input grammars recognized by the
fuzzer and setting up the entire testing pipeline.

Test oracles. Fuzzing is known to be effective in detecting program crashes. To find func-
tional/logical bugs, additionally developers have to provide test oracles, which are usually
hand-written programs that determine if an actual output is expected or not. Since the test
oracles encode certain invariants or relationships between inputs and outputs, they can
also be expressed as pre- and post-conditions of functions. In FLAT, developers do not have
to provide test oracles manually but instead attach pre- and post-conditions as semantic
contracts in a declarative manner. FLAT will detect contract violations at runtime for each
test input generated by the fuzzer, thereby automatically detecting functional bugs.

Traditionally, users have to write extra code to accomplish each of the tasks above.
As with any other type system, the only user effort required by FLAT is to provide type annotations

that specify the intended behaviors of their programs. FLAT already provides standard formats
such as email addresses and JSON, and are subject to extension in the future. For custom formats,
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their grammars are either already there (described in the documentation) or should be there, as
a well-engineered API should contain a description of the required formats. In other case, the
grammars are feasible to be specified and this process is worthwhile.

Contributions. Our main contribution is FLAT, a general framework for typing and type-checking
string-manipulating programs, based on the idea of “formal languages as types”. After beginning
with an overview (§2) of the motivations and ideas behind FLAT by Python examples, we make the
following detailed technical contributions:

• We define an abstract core language FLAT-CORE (§3, §4) to demonstrate FLAT’s type system
and runtime type checking. We rely on code instrumention to check if all input arguments,
return values, and local variables match the annotated types.

• We realize the idea of FLAT in Python and present FLAT-PY (§5), a testing framework for
Python with built-in language types for commonly used data formats (e.g., email address,
URL, JSON) and Python-style annotations.

• We conducted case studies (§6) on open-source Python code fragments. Requiring a reasonable
amount of user annotations that are intuitive to specify, FLAT-PY identifies logical bugs from
randomly generated test inputs.

After discussing related work in §7, we close the paper in §8 with conclusion and future directions.
Our tool and data are publicly available: see §8 for the link.

2 A TOUR OF FLAT-PY
To demonstrate how one uses FLAT-PY to test and debug their code, let us consider an ad hoc
parser:
1 def get_hostname(url: str) -> str:
2 """Extract the hostname part."""
3 start = url.find('://') + 3
4 end = url.find('/', start)
5 host = url[start:end]
6 return host

This function aims to extract a hostname from a given URL. It first computes the starting and
ending positions of the hostname part, represented by the local variables start and end respectively.
The start (Line 3) is the position right after '://'. This position is computed by adding the starting
index of the pattern with its length three, where the starting index is obtained via a call of the find
method. The end (Line 4) is the position of the first '/' seen afterward, which is obtained via a call
of the find method within a range beginning with start. Finally, using these two positions, the
hostname part is extracted as a substring of the input url (Line 5) and returned (Line 6).
Let us now imagine that we wish to save the extracted hostname in a database table named

hosts. We achieve this by executing a SQL query that is instantiated from the following template,
where <host> is the metavariable we will substitute:

INSERT INTO hosts VALUES ('<host>')

The function below summarizes our workflow:
1 def save_hostname(url: str, db_cursor: MysqlCursor):
2 sql_temp = "INSERT INTO hosts VALUES ('{host}')"
3 hostname = get_hostname(url)
4 sql_query = sql_temp.format(host=hostname)
5 db_cursor.execute(sql_query)

It uses the format method to instantiate the template sql_temp (Line 4), and the execute method
from MySQL library to fire a query (Line 5). Is this implementation correct and safe?

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2024.
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2.1 Detecting SQL Injection
The previous implementation is indeed unsafe and suffers from SQL injection. To see this, let us
consider the following malicious input, which is indeed not a valid URL (note that “--” starts a
single line comment in SQL):

"https://localhost'); DROP TABLE users --/"

Feeding it into the get_hostname function, we obtain the following output:
"localhost'); DROP TABLE users --"

Instantiating the sql_temp variable in function save_hostname with it, we end up having a query
involving an undesired DROP TABLE command:

INSERT INTO hosts VALUES ('localhost'); DROP TABLE users --')

Since all the above steps are well-typed, and that no runtime error has occurred so far, this malicious
query will be executed, leading to the destruction of the users table in our database. Only then we
will detect this security issue, but it is too late.

Although there are various industry practices to prevent SQL injection attacks, such as prepared
statements, the problem of ill-formed inputs remains unsolved. What we really need is a fine-
grained type system that is aware of the internal structures of strings. In our framework, to enable
such a feature, the user needs to specify type annotations using our language types.

Solution 1: annotate get_hostname. We expect the input url to be a URL string, and the return
value to be a hostname. Thus, we annotate this function using two built-in language types URL and
Host5:

def get_hostname(url: URL) -> Host:
...

FLAT-PY now processes the above type annotations, and generates an instrumented version with
two type assertions: one checks if the input url is a sentence of the URL grammar, and the other
checks if the return value is a sentence of the hostname grammar, via parsing. We apply Earley
parsing [4]: the worst time complexity is cubic, but linear for deterministic CFGs, which is the
case for many practical grammars that are 𝐿𝐿(𝑘) or 𝐿𝑅(𝑘). If either check fails, a type error will be
reported. Feeding the aforementioned malicious input to the instrumented code, we will encounter
the following type error:

Type mismatch for argument 0 of method get_hostname
expected type: URL
actual value: "https://localhost'); DROP TABLE users --/"

The error message says that the malicious input is ill-typed, as it does not match the URL grammar
(';' is disallowed). This error aborts the execution and avoids the SQL injection attack.

Solution 2: annotate sql_query. An alternative approach is to annotate the local variable sql_query
defined in save_hostname with a type for “safe” SQL queries:

sql_query: SafeSQL = sql_temp.format(host=hostname)

This customized language type SafeSQL can be introduced using a special type constructor lang
provided by FLAT-PY:

SafeSQL = lang('SafeSQL', """
start: "INSERT INTO hosts VALUES " "(" Host ")";
""")

5As this function aims to handle simple URLs with ordinary hostnames (say, not IP addresses) and without queries and
fragments, here we use a simplified URL syntax rather than the standard one defined in RFC 3986 [1]. For the latter, we
provide another built-in type RFC_URL.
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The second argument defines a grammar for this language type using an ANTLR-like [16] notation,
and one is allowed to directly refer Host to the hostname grammar. As our intention here is to only
insert hostnames into the database, the grammar only accepts this specific INSERT command, while
rejecting the dangerous DROP TABLE command.
So far, we have finished all the required annotations. FLAT-PY now takes over to generate the

instrumented code. Feeding the aforementioned malicious input to it, a type error will be triggered:
Type mismatch

expect: SafeSQL
but found: "INSERT INTO hosts VALUES ('localhost'); DROP TABLE users --')"

Again, we avoid the SQL injection attack.

Remarks. To prevent SQL injection attacks, one may use prepared statements. In this approach,
developers define the SQL code first and then pass in each parameter, possibly from outside inputs.
The values of the parameters are regarded as data but not code, thus this approach guarantees that
an attacker cannot change the intents of the queries. But this approach still neglects the formats of
the parameters. We again need FLAT to ensure that the passed host parameter is indeed a valid
hostname, otherwise the database would contain arbitrary strings in the hosts table.

2.2 Language-Based Fuzzing
Apart from the security issue, is our implementation functionally correct? That is to say, does it
behave normally when feeding valid inputs? To answer this question, language-based fuzzing is
a convenient approach: test inputs are automatically generated from the input grammars rather
than manually specified. Traditionally, developers have to set up the entire fuzzing pipeline by
themselves, including specifying the input grammars in the fuzzer’s format.

In FLAT-PY, if the input types of a function are annotated, such a process is automated through
a special fuzz annotation. To fuzz the get_hostname function, a single line of code is sufficient:

fuzz(get_hostname, 50)

The first argument of the fuzz function is the test target and the second is the number of random
inputs needed. The input grammar for the url parameter is not needed here, but is automatically
inferred from the type annotation of get_hostname. FLAT-PY will translate this type into an input
grammar recognized by the backend fuzzer ISLa [21]. It will also set up the entire fuzzing process:
invoke ISLa to generate 50 random test inputs, feed them to the target function get_hostname(),
and record the testing results. We select ISLa as the backend fuzzer because it can also generate
inputs satisfying additional logical constraints, which is useful to handle context-sensitivity (will
see later).

From the 50 random test inputs, one empty-path URL "http://W" triggered a type error:
Type mismatch

expect: Host
but found: ''

Note that this failing input "http://W" is indeed a valid URL. However, the output value—the empty
string—is not a valid hostname. But for this particular input, the hostname should be "W" rather
than empty, thus our implementation is incorrect.
Through further debugging, we realized this bug was caused by the code at Line 4: since the

character '/' was not found in the rest part of the input "W", the call to find returned -1, leading
to an incorrect ending index of the hostname part. Consequently, the function outputs an empty
string that violates the Host type requirement.
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To fix this issue, one can, for example, use an if-statement for a case analysis on the emptiness of
the path: if it is empty, then the hostname should be the remainder of the string; otherwise, the
current approach applies. The fixed version is shown below (added lines are highlighted):

def get_hostname(url: URL) -> Host:
"""Extract the hostname part."""
start = url.find('://') + 3
end = url.find('/', start)
if end == -1: # fixed code

end = len(url) # fixed code
host = url[start:end]
return host

2.3 Test Oracles
There is one more property we wish to validate: the output must be the exact hostname extracted
from the input url. Traditionally, to check this property, we have to develop a separate test oracle
that first extracts the hostname from the input URL and then compares it against the actual output.
This is indeed extra work for developers, in particular we need to build a URL parser to extract the
hostname part.
This property describes a relationship between the input and the output string of the function

get_hostname, thus in FLAT-PY, we express it as a post-condition, introduced by the ensures anno-
tation attached to the function. To ease the process of substring extraction by syntax, FLAT-PY
introducesXPaths that locate subtrees in the derivation tree of a string, and offers a select(xpath, s)

function to extract the substring from the given string s that corresponds to the subtree located by
the given xpath. The following shows the added annotation:

@ensures(lambda url, ret: ret == select(xpath(URL, "..host"), url))
def get_hostname(url: URL) -> Host:

...

In the ensures annotation, the post-condition is a predicate over all input arguments (url) and
the return value (ret). Users may define this predicate as a lambda expression as shown above, it
checks if the return value ret is equal to the hostname substring extracted from the input url (using
the select function). The XPath is constructed via the xpath(lang_type, path_lit) function. The
XPath literal "..host" refers to the unique node labeled with host (a nonterminal symbol of the
URL grammar) in the derivation tree of url. This post-condition will be validated whenever the
function returns: if violated, a type error will be reported. Using the fuzz annotation presented
earlier in §2.2, no more type errors were detected.

3 FLAT-CORE: THE CORE LANGUAGE
We begin the technical presentation of our FLAT framework with an abstract core language called
FLAT-CORE. It is a minimal language that integrates FLAT’s language types into a tiny imperative
programming language. It also offers annotations for users to attach pre- and post-conditions for
methods. It can be extended to combine other advanced language features so that one can build
FLAT instantiations for existing programming languages.
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Program. A FLAT-CORE program 𝑝 contains a set of definitions:

𝑝 ::= 𝑑 (program)
𝑑 ::= def 𝑓 (𝑥1 : 𝑡1, . . . , 𝑥𝑘 : 𝑡𝑘 ) : 𝑡 = 𝑒 (fun def)

| method𝑚(𝑥1 : 𝑡1, . . . , 𝑥𝑘 : 𝑡𝑘 ) : 𝑡 𝜑 {𝑠} (method def)
| lang𝐿 = 𝐺 (lang def)

𝜑 ::= requires 𝑒 | ensures 𝑒 (pre, post)
The meta notation ·̄ refers to repeating · zero or multiple times. Like in Dafny [15] we distinguish
between functions and methods: one uses functions to write specifications that should be pure,
and methods to model the verification/testing targets that are usually impure. Thus, a function
body is an expression 𝑒 , while a method body is a block of statements {𝑠}. We require the user to
annotate the types 𝑡𝑖 for each parameter 𝑥𝑖 and the return type 𝑡 . A method can optionally have
pre-/post-conditions specified using requires and ensures clauses. A pre-condition is a predicate
(i.e., a Boolean function) over the method’s input arguments. A post-condition is a predicate over the
method’s input arguments and its return value. Both are typically lambda expressions. Furthermore,
the special lang-definition specifies a language type 𝐿 via a grammar 𝐺 : any string value 𝑠 has this
type iff 𝑠 ∈ L(𝐺).

Grammars. We adopt an ANTLR-like [16] meta notation for expressing a grammar in the lang-
definition. A grammar 𝐺 consists of a set of production rules {𝑟1; 𝑟2; . . . ; 𝑟𝑛}. Each production rule
𝐴 → 𝛼 consists of a nonterminal 𝐴 and a clause 𝛼 that is inductively defined as follows:

𝛼 ::= 𝑎 | 𝐴 | 𝛼1𝛼2 | (𝛼1 | 𝛼2) (standard)
| 𝛼∗ | 𝛼+ | 𝛼? | 𝛼{𝑘} | 𝛼{𝑘1, 𝑘2} (repetition)
| [𝑐1-𝑐2] (char set)

Like ANTLR, we support terminals (a string literal 𝑎), nonterminals (𝐴), concatenation (whitespace),
alternatives (“|”), Kleene star (“∗”), Kleene plus (“+”) and optional (“?”). In addition, we support
convenient notations inspired by Python’s regex syntax:

• 𝛼{𝑘} for repeating 𝛼 exactly 𝑘 (𝑘 ≥ 2) times,
• 𝛼{𝑘1, 𝑘2} for repeating 𝛼 at least 𝑘1 times and at most 𝑘2 times (𝑘1 < 𝑘2), and
• [𝑐1-𝑐2] for the character set in between 𝑐1 and 𝑐2 (both inclusive).

Types. We adopt a two-layer type system. A simple type constitutes built-in types (for integers,
Booleans, and strings) and function types:

𝜏 ::= Int | Bool | String (built-in type)
| (𝜏1, . . . , 𝜏𝑘 ) → 𝜏 (function type)

The full type system supports language types introduced by lang-definitions and refinement types:
𝑡 ::= 𝜏 (simple type)

| 𝐿 (language type)
| {𝑥 : 𝑡 | 𝑒} (refinement type)

A refinement type {𝑥 : 𝑡 | 𝑒} consists of a base type 𝑡 and a Bool-typed expression 𝑒 as the refinement.
We use the standard set-comprehension notation to indicate the inhabitants of a refinement type is
a set of 𝑡-typed values that satisfy the condition 𝑒 , where the value is bound to 𝑥 in 𝑒 . For example,
a refinement type for a positive integer is written {𝑛 : Int | 𝑛 > 0}. The bound variable 𝑥 is ignored
if not used in the refinement.

To fit the setting of testing, base types cannot contain function types: one usually needs first-order
logic propositions (i.e., with quantifiers ∀ and ∃) to express interesting properties over functions,
but they cannot be evaluated to a Boolean value at runtime.
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On the other hand, refinement types can be nested, say {{𝑛 : Int | 𝑛 > 0} | 𝑛 < 10}. One may
put the two conditions “𝑛 > 0” and “𝑛 > 10” together to obtain an equivalent but compact form
{𝑛 : Int | 𝑛 > 0 ∧ 𝑛 < 10}. We call such an operation type normalization, where the normalized
type is a refinement type whose base type is always a simple type:

norm(𝜏) = {𝜏 | true} norm(𝐿) = {𝑠 : String | 𝑠 ∈ 𝐿}

norm(𝑡) = {𝑦 : 𝜏 | 𝑒1}
norm({𝑥 : 𝑡 | 𝑒}) = {𝑥 : 𝜏 | 𝑒1 [𝑥/𝑦] ∧ 𝑒}

Expressions. We consider standard expressions with two special constructs:

𝑒 ::= 𝑛 | 𝑥 (constants, variables)
| 𝑒 (𝑒1, . . . , 𝑒𝑘 ) (function application)
| (𝑥1, . . . , 𝑥𝑘 ) → 𝑒 (lambda expressions)
| if 𝑒 then 𝑒1 else 𝑒2 (if-then-else)
| 𝑒 ∈ 𝐿 (language type test)
| select (𝜋, 𝑒) | select_all(𝜋, 𝑒) (XPath selection)

The special construct 𝑒 ∈ 𝐿 tests (hence it has type Bool) if the String-typed expression 𝑒 has the
language type 𝐿. The two special functions select (𝜋, 𝑒) and select_all(𝜋, 𝑒) are used for substring
selection from the String-typed expression 𝑒 by an XPath 𝜋 (will be introduced soon). The former
returns the unique substring located by 𝜋 (if there are none or multiple, an error will be raised): it
is the select function shown in §2.3. The latter returns all substrings located by 𝜋 as a list.
Note that ordinary unary/binary expressions are internally desugared to function application,

for example, 𝑥 > 0 is internally just gt(𝑥, 0), where gt is a built-in function for greater than on
integers. But for better readability, we prefer unary/binary expressions as syntactic sugars.

Library functions and XPaths. The core language comes with a library including: (1) standard
unary/binary operations (for arithmetic, comparison, and Boolean computation) over integers and
Booleans; (2) string operations defined in SMT-LIB’s theory of Unicode strings6; and (3) XPath
selection functions.
For ease of accessing substrings of a string 𝑠 ∈ 𝐿, which are indeed the nodes in the derivation

tree of 𝑠 , we adopt an XPath-like syntax, using the nonterminals of the grammar as labels. An
XPath is a sequence of selectors, each of which is one of the following:

• “.𝐴[𝑘]”: to select the 𝑘-th (𝑘 ≥ 1) direct child with label 𝐴;
• “.𝐴”: to select all direct children with label 𝐴;
• “..𝐴”: to select all descendants (both direct and indirect children) with label 𝐴.

For example, the XPath “.𝐴[1] ..𝐵.𝐶” refers to substrings of all the direct children with label 𝐶 ,
that are of all descendants with label 𝐵, that are in the first child with label 𝐴 of the root tree. To
see this concretely, let us consider a string 𝑠 with its derivation tree depicted in Fig. 1. The XPath
selection select_all(.𝐴[1] ..𝐵.𝐶, 𝑠) returns a list of three substrings 'a', 'b', and 'c'. Note that both
'b' and 'c' are selected because their common ancestor 𝐵2 is indeed a descendant—though not a
direct child—of 𝐴1. The substring 'foo' is not selected since its parent 𝐶4 is not a direct child of 𝐵3,
as required by “.𝐶”. The substring 'bar' is not selected since it is under 𝐴2, the second (but not the
first) child of the root 𝑆 , as required by “.𝐴[1]”.

6https://smt-lib.org/theories-UnicodeStrings.shtml
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𝑆

𝐴1

𝐵1

𝐶1

'a'

𝐷

𝐵2

𝐶2

'b'

𝐶3

'c'

𝐵3

𝐸

𝐶4

'foo'

𝐴2

𝐵4

𝐶5

'bar'

Fig. 1. The XPath “.𝐴[1] ..𝐵.𝐶” selects three (leaf) nodes from this derivation tree that are highlighted.

Statements. We consider commonly-used statements in a typical imperative language:

𝑠 ::= var𝑥 : 𝑡 ; | 𝑥 = 𝑒; (decl, assign)
| var𝑦 = call𝑚(𝑒1, . . . , 𝑒𝑘 ); (method call)
| assert 𝑒; (assertions)
| return 𝑒; (return)
| if 𝑒 {𝑠} else {𝑠} | while 𝑒 {𝑠} (control flow)

We allow a declare-and-assign statement “var𝑥 = 𝑒 ;” where the type of 𝑥 is inferred from 𝑒 . It is
conceptually equivalent to “var𝑥 : 𝑡 ;𝑥 = 𝑒;” given that 𝑒 has type 𝑡 .
As the core language distinguishes methods from functions, here we introduce a method-call

statement to invoke methods. Since statements can only appear in the method body, one can only
call methods from methods, but not functions.

Example. Using the core language, we rewrite the Python function get_hostname defined in §2
as the method below:

method getname(url : URL) : Host
ensures (url, ret) → ret == select (..host, url)

{
var start : Int = indexof (url, "://", 0) + 3;
var end : Int = indexof (url, "/", start);
var host : String = substr (url, start, end − start);
return host;

}
This method contains a post-condition that uses the select operator to extract the substring

associated with the XPath “..host”. The method body uses two string operations:
• indexof (𝑠, 𝑡, 𝑖) is the SMT-LIB function str.indexof: it returns the index of the first occurrence
of the string 𝑡 in string 𝑠 , starting at the index 𝑖;

• substr (𝑠, 𝑖, 𝑛) is the SMT-LIB function str.substr: it evaluates to the longest substring of 𝑠 of
length at most 𝑛, starting at the index 𝑖 .
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4 RUNTIME TYPE CHECKING VIA INSTRUMENTATION
After showing the syntax and semantics of FLAT-CORE, this section presents how to “type-check”
a FLAT-CORE program. Since this paper focuses on the dynamic approach, the “type checking”
we refer to here is not the traditional static type checking done at compile time, but instrumenting
necessary type assertions that will be executed at runtime, each checks if a concrete value has the
specified type. This instrumentation process is done automatically via a preprocessing and analysis
of the type definitions and the annotations in the original program. In the end, we execute the
instrumented version: any violated assertion will immediately raise a type error at runtime.

4.1 Preparation
There are trivial type errors in FLAT-CORE programs that are related to simply types merely (not
related to any logical constraint), such as assigning an integer variable with a string value, or
feeding a Boolean to a function that expects a string. One can easily identify them via a standard
static type checking algorithm (as done in Java), ignoring all the syntactic constraints required by
language types (i.e., regarding them as the String type) and all the semantic constraints occurred
in refinement types and pre-/post-conditions. If the program is free of trivial errors, then we
will perform program instrumentation to identify nontrivial errors related to the violation of any
syntactic or semantic constraint.

4.2 Instrumentation
The overall workflow of program instrumentation is to traverse all methods in the original program
and insert necessary assertions, including:

• a string having a language type must be a sentence of the corresponding grammar;
• a value having a refinement type must satisfy the refinement condition;
• when calling a method, its pre-conditions must hold for the input arguments;
• when a method returns, its return value must fulfill its post-conditions.

To formally present the instrumentation process, we build rules that transform an original
program into an instrumented version. At the top level, the whole program transformation is done
by replacing each original method

method𝑚(𝑥1 : 𝑡1, . . . , 𝑥𝑘 : 𝑡𝑘 ) : 𝑡 Φ {𝑆},

with a new version

method𝑚(𝑥1 : 𝑡1, . . . , 𝑥𝑘 : 𝑡𝑘 ) : 𝑡 {𝑆 ′}.

Themost important step is to transform themethod body 𝑆 into 𝑆 ′ to contain all necessary assertions
listed above (will be discussed soon). And this includes checks for pre- and post-conditions, hence
the contract Φ is no longer needed in the new version.
We formally present the transformation of method bodies as a judgment of the form Γ | 𝑚 ⊢

𝑆 ↩→ 𝑆 ′, stating that under the typing context Γ and the method𝑚, a list of statements 𝑆 (belonging
to 𝑚’s body) are transformed into 𝑆 ′. The typing context Γ maintains a list of bindings 𝑥 : 𝑡 ,
indicating that the local variable 𝑥 has type 𝑡 . Initially, the typing context records the types of𝑚’s
input arguments:

Γ ≜ {𝑥𝑖 : 𝑡𝑖 | 1 ≤ 𝑖 ≤ 𝑘}.

All the transformation rules process the statement list 𝑆 sequentially. Most of them do not refer
to the current method𝑚 so we elide it in the rule for simplicity (hence in form Γ ⊢ 𝑆 ↩→ 𝑆 ′).
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4.2.1 Declarations. No additional assertions are needed, but the typing context gets updated by
appending (denoted by a comma) a new binding recording the local variable’s type:

Decl
Γ, 𝑥 : 𝑡 ⊢ 𝑆 ↩→ 𝑆 ′

Γ ⊢ var𝑥 : 𝑡 ; 𝑆 ↩→ var𝑥 : 𝑡 ; 𝑆 ′

4.2.2 Assignments. Additional assertions are needed to check if the assigned value 𝑒 fulfills the
constraint required by the type 𝑡 of the target variable 𝑥 . We extract this constraint via type
normalization, say if norm(𝑡) = {𝑦 : 𝜏 | 𝜑}, then any value of 𝑡 must fulfill the predicate 𝜆𝑦.𝜑 . We
define a helper function extract (𝑡) to obtain this predicate. To avoid evaluating 𝑒 twice, we decide,
in the transformed body, to first perform the original assignment and then assert that 𝑥 must fulfill
that predicate:

Assign
(𝑥 : 𝑡) ∈ Γ extract (𝑡) = 𝑝 Γ ⊢ 𝑆 ↩→ 𝑆 ′

Γ ⊢ 𝑥 = 𝑒; 𝑆 ↩→ 𝑥 = 𝑒; assert𝑝 (𝑥); 𝑆 ′
The added assertion is indeed redundant if 𝑝 (𝑥) is simply true, which happens if either 𝑡 is a

simple type or 𝑡 is a refinement type with a trivial true condition. Our implementation did the
optimization to drop such redundant assertions. But for the sake of generality, the transformation
rules (including the subsequent) shown in the paper will keep them.

4.2.3 Method Calls. To handle method-related statements, we rely on several meta-properties for
methods, which we precomputed for each method𝑚 defined in the program:

• sig(𝑚): the type signature of the method𝑚, which consists of parameter names with types,
and the return type;

• pre(𝑚): the pre-condition of the method𝑚;
• post (𝑚): the post-condition of the method𝑚.

In case multiple pre-/post-conditions are declared, pre(𝑚) and post (𝑚) give the conjunction. Note
that pre(𝑚) is a predicate over 𝑚’s input arguments, and post (𝑚) a predicate over 𝑚’s input
arguments and its return value.
At call sites, we need assertions: (1) to ensure each argument fulfills the constraint required by

the corresponding parameter type of the callee, and (2) to ensure the pre-condition.
Our transformation rule is the following:

Call

sig(𝑚) = (𝑥1 : 𝑡1, . . . , 𝑥𝑘 : 𝑡𝑘 ) → 𝑡 pre(𝑚) = 𝑝𝑚
∀𝑖 : 𝑧𝑖 fresh ∀𝑖 : extract (𝑡𝑖 ) = 𝑝𝑖 Γ, 𝑦 : 𝑡 ⊢ 𝑆 ↩→ 𝑆 ′

Γ ⊢ var𝑦 = call𝑚(𝑒1, . . . , 𝑒𝑘 ); 𝑆 ↩→ {var 𝑧𝑖 = 𝑒𝑖 ; assert𝑝𝑖 (𝑧𝑖 ); }𝑘𝑖=1

assert𝑝𝑚 (𝑧1, . . . , 𝑧𝑘 ); var𝑦 = call𝑚(𝑧1, . . . , 𝑧𝑘 ); 𝑆 ′

To avoid evaluating the actual arguments 𝑒𝑖 more than once, we introduce fresh variables 𝑧𝑖 to save
their values. To achieve (1), we query the signature of the callee𝑚, extract the required constraints
by𝑚’s input types, and insert necessary assertions as done in rule Assign. To achieve (2), we query
the pre-condition of𝑚 and insert an assertion to ensure the pre-condition holds for 𝑧𝑖s. Finally, we
call𝑚 with 𝑧𝑖s and assign the return value to a newly declared variable 𝑦, appending the binding
of 𝑦 : 𝑡 to Γ, where 𝑡 is the return type of𝑚.

4.2.4 Return Statements. Dual to method calls, at returning points we need assertions: (1) to
ensure the return value fulfills the constraint required by the return type, and (2) to ensure the
post-condition.

Assuming the arguments are immutable, our transformation rule is the following:

Return
sig(𝑚) = (𝑥1 : 𝑡1, . . . , 𝑥𝑘 : 𝑡𝑘 ) → 𝑡 post (𝑚) = 𝑝𝑚 𝑧 fresh extract (𝑡) = 𝑝

Γ | 𝑚 ⊢ return 𝑒; 𝑆 ↩→ var 𝑧 = 𝑒; assert𝑝 (𝑧); assert𝑝𝑚 (𝑥1, . . . , 𝑥𝑘 , 𝑧); return 𝑧;

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2024.



FLAT: Formal Languages as Types 1:13

Again, to avoid evaluating the return value 𝑒 more than once, we introduce a fresh variable 𝑧 to
hold its value. To achieve (1), we query the signature of the current method𝑚, extract the required
constraints by𝑚’s return type, and insert necessary assertions as done in rule Assign. To achieve
(2), we query the post-condition of𝑚 and insert an assertion to ensure the post-condition holds for
this method’s input arguments 𝑥𝑖s and the return value 𝑧. Because any statement after the return
statement is unreachable, we do not process the rest statements 𝑆 as other rules do.
If the arguments are mutable, we need to save their initial values into fresh variables and use

them in the post-condition assertion, to match the usual interpretation of a post-condition that it
relates the initial state (before executing the function body) with the return value.

4.2.5 Other Statements. No additional assertions are needed for other statements. We simply keep
their structure and recursively process their nested bodies (if any):

Assert
Γ ⊢ 𝑆 ↩→ 𝑆 ′

Γ ⊢ assert 𝑒; 𝑆 ↩→ assert 𝑒; 𝑆 ′
If

Γ ⊢ 𝑆1 ↩→ 𝑆 ′1 Γ ⊢ 𝑆2 ↩→ 𝑆 ′2 Γ ⊢ 𝑆 ↩→ 𝑆 ′

Γ ⊢ if 𝑒 {𝑆1} else {𝑆2}; 𝑆 ↩→ if 𝑒 {𝑆 ′1} else {𝑆 ′2}; 𝑆 ′

While
Γ ⊢ 𝑆1 ↩→ 𝑆 ′1 Γ ⊢ 𝑆 ↩→ 𝑆 ′

Γ ⊢ while 𝑒 {𝑆1}; 𝑆 ↩→while 𝑒 {𝑆 ′1}; 𝑆 ′

5 FLAT-PY: FLAT FOR PYTHON
In this section, we present FLAT-PY, a pratical testing framework for Python. It offers annotations
(§5.1) for defining language types and refinement types, and specifying contracts for functions. It
comes with built-in types for email address, URLs, JSON, etc. It provides a convenient fuzz function
(§5.2) to enable random testing with the aid of language-based fuzzers. From these annotations,
we adopt a similar approach (as in §4.2) to instrument necessary type assertions via Python
AST transformation (§5.3). Finally, we discuss how our FLAT framework can be realized in other
programming languages (??).

5.1 Annotations
We introduce two groups of annotations for Python:

• type constructors for defining new language types and refinement types, and
• method decorators for adding pre- and post-conditions.

Python’s PEP 4847 standard offers a flexible way to attach type annotations: type can be arbitrary
Python expressions. To represent our language types and refinement types, which do not exist in
Python’s type system, we build two internal classes LangType and RefinementType for each of them
and provide two type constructors as user APIs:

def lang(name: str, rules: str) -> LangType
def refine(base: type, predicate: Any) -> RefinementType

The language type constructor lang takes two parameters: a type name and a string representing
the production rules, using the extended Backus-Naur form (EBNF) defined in FLAT-CORE (§3).
For example, the following expression creates a language type for a simple integer arithmetic
expression using only addition and subtraction:

lang('IntExp', """
start: (number op)* number;
number: [0-9]+;
op: "+" | "-";
""")

7https://peps.python.org/pep-0484
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The refinement type constructor refine builds a refinement type {𝑥 : 𝑡 | 𝑒}, taking two parame-
ters:

• a Python type that represents the base type 𝑡 , which is either a Python built-in type (int,
bool, or str) mapping to the FLAT-CORE built-in types (Int, Bool, or String), or a language
type constructed by lang;

• a Python function predicate that packs the bound variable 𝑥 and its refinement 𝑒 into a
lambda expression lambda x: e.

For example,
refine(JSON, lambda s: len(s) < 10)

maps to the refinement type {𝑠 : JSON | length(𝑠) < 10}.
One may use Python’s type alias declaration to provide shorthands for language/refinement

types and use them as the type annotations:
IntExp = lang('IntExp', """
start: (number op)* number;
number: [0-9]+;
op: "+" | "-";
""")
def calculate(exp: IntExp) -> int:

...

For pre- and post-conditions, we provide two method decorators that both take a predicate as
inputs:

def requires(predicate: Any) # for pre-condition
def ensures(predicate: Any) # for post-condition

In requires, the predicate is over the input arguments of the method. In ensures, the predicate is
over not only the input arguments but also the return value, so that one is able to express input-
output relations as oracles. For example, the following contract reveals the functional correctness
of converting a string with only digits into the corresponding integer value:

@requires(lambda s: s.isdigit())
@ensures(lambda s, n: int(s) == n)
def convert_digit(s: str) -> int:

...

To avoid repeating the input arguments in the lambda expressions, we also accept a string as
the predicate, which is a textual representation of a valid Python expression in which the method
input arguments are automatically bound and the return value is bound to “return”. Using this
style, the contract for convert_digit is rewritten as below:

@requires('s.isdigit()')
@ensures('int(s) == return')
def convert_digit(s: str) -> int:

...

Both styles will be used interchangeably in the remainder of the paper for better readability.

5.2 Type-Directed Test Generation
We offer a fuzz function that triggers the testing of a target function via k randomly-generated
inputs:

def fuzz(target: Callable, k: int,
using: Optional[dict[str, Generator]] = None)
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Each input consists of one random value per parameter of the target function, and the producers
can be specified in the optional using argument. We provide default producers for two kinds of
parameters: (1) if a default value is specified, say 𝑣 , then we synthesize a constant producer that
always yields the value 𝑣 ; (2) if the parameter has a grammar-based refinement type {𝐿 | 𝜑}, then
we synthesize a producer that yields sentences of 𝐿 that also fulfill 𝜑 . Otherwise, the user must
provide one explicitly. If the target function contains preconditions, then only values that fulfill
the conditions will be used as test cases.

Synthesizing a constant producer is trivial:
def constant_producer_for_v():

while True:
yield v

The interesting case is how to produce sentences of a CFG that also fulfill a semantic constraint.
Recall that we use ISLa as our backend fuzzer. ISLa has its own specification language for expressing
the semantic constraints, and not all Python Boolean expressions are convertible to formulae in
this language. Our idea is to split the condition into two parts 𝜑 = 𝜑1 ∧ 𝜑2, where 𝜑1 is convertible
to an ISLa formula 𝜑ISLa, and 𝜑2 is not. The producer works in a generate-and-filter fashion: it first
calls the ISLa solver to obtain a string, which is in 𝐿 and fulfills 𝜑1, but may not hold 𝜑2; this string
is yielded only when 𝜑2 evaluates to True.
Technically, the condition split is realized by rewriting it into conjunctive normal form and

converting as many of the conjuncts into ISLa formulae as possible, including:
• standard arithmetic, comparison, and Boolean operations;
• string operations that have equivalences in SMT string theory;
• substring selection via our library functions with XPaths, together with forall/exists check
on the selected strings.

5.3 AST Transformation
Python offers a convenient ast module to parse, print, and manipulate AST nodes. We perform
program transformation by subclassing ast.NodeTransformer. Except for the method call state-
ment, all the statements of FLAT-CORE have equivalences in Python statements. For them, the
transformation rules are conceptually the same as the rules presented in §4.2.
As Python does not distinguish methods from functions as FLAT-CORE does, the method call

statement is simply a call expression in Python (of type ast.Call). The rule Call (in §4.2) does not
apply. But realizing a simple fact that if the method𝑚 is called (from whatever method𝑚′), the
body of𝑚 will be entered, we can instead move all the necessary assertions from the caller (𝑚′) site
to callee (𝑚) site, by replacing the actual arguments (i.e., the fresh variables 𝑧𝑖s in rule Call) with
the formal parameters of𝑚. For example, we instrument the following assertions (highlighted) for
convert_digit:

def convert_digit(s: str) -> int:
assert s.isdigit() # pre-condition
... # instrumented body

So far, if any instrumented assertion fails, the stack trace will report the locations in the instru-
mented code rather than the original code. This is inconvenient for the users to debug their code. To
fix this issue, in our implementation, we instrument additional statements that inject the original
locations and raise our customized errors rather than Python’s AssertionError. Such customized
errors will be caught, and a new stack trace will be built from the current stack trace, reporting the
original locations extracted from the stack frames. For precondition violation errors, the new stack
trace reports the error locations of the caller.
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5.4 FLAT for Other Programming Languages
The concepts and ideas behind FLAT are language-agnostic. We choose Python as the first language
to realize FLAT as a proof of concept in this paper because: (a) Python is flexible about type
annotations thus easy to define and attach custom types, and (b) Python has a convenient ast
module for code instrumention via AST transformation. It is possible to port FLAT to other host
programming languages, but the required amount of engineering work depends on the features of
that host language.
In a statically-typed language like Java, extending the type system of the host language with

full-fledged refinement types is usually difficult: one has to modify the compiler to check those
new types, and also to be careful about the interplay of the new types with the existing ones. A
lightweight approach is to not regard the refinement types as types in that host language but as
annotations (or other forms of syntactic metadata) attached to functions and variables. For example,
in Java, one can leverage its annotation system to build special annotations for attaching type
refinements, together with pre- and post-conditions. Once the annotations are ready, we parse
them and perform program transformation, for example, through compiler plug-ins in Java.

Finally, library functions supported by FLAT-CORE, in particular the XPath-related ones, should
be implemented in the host language as well. Apart from these, functions available from either the
official or third-party libraries can be used to increase the expressiveness of the specifications.

6 CASE STUDIES
In this section, we apply FLAT-PY to real-world Python code fragments manipulating structured
strings. We inspect their code to learn what the expected behaviors are, and attach necessary FLAT
annotations to them. Based on the annotations, we execute our runtime checker, and if any type
errors happens, we will study and understand the cause of failures. We conducted three case studies
from §6.1 to §6.3, targeting the following research questions:

• RQ1: How much effort does the user put into specifying annotations?
• RQ2: How many type errors are detected using runtime checks?
• RQ3: What is the overhead of executing runtime checks?

Finally, we discuss the threats to validity in §6.4.
All experiments were conducted on a MacBook Pro with Apple(R) M1 Max chip, 32 GB memory,

running Python version 3.11.9.

6.1 Format Validation
It is common in web/GUI applications to validate that user-provided data matches the required
format before writing into databases. We studied three format validation functions taken from the
PlatformIO Core project8, a platform for embedded software development. The functions validate
user names, passwords, and team names.

As an example, let us first consider the validate_teamname function:
1 def validate_teamname(value):
2 value = str(value).strip() if value else None
3 if not value or not re.match(
4 r"^[a-z\d](?:[a-z\d]|[\-_ ](?=[a-z\d])){0,19}$", value, flags=re.I
5 ):
6 raise BadParameter(
7 "Invalid team name format. "

8https://github.com/platformio/platformio-core/blob/591b377e4a4f7219b95531e447aec8d28fd41a79/platformio/account/
validate.py
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8 "Team name must only contain alphanumeric characters, "
9 "single hyphens, underscores, spaces. It can not "
10 "begin or end with a hyphen or an underscore and must"
11 " not be longer than 20 characters."
12 )
13 return value

The error message at Lines 7-11 describes the format requirements for a valid team name. We
study if all strings that meet the required format can be accepted by this validation function, via
random test generation. We will adopt and compare two approaches: one with FLAT-PY based on
user annotations, and the other without FLAT-PY based on a grammar-based fuzzer like ISLa alone.

Testing with FLAT-PY. We start by specifying a language type for valid team names. From the
natural language description in the error message, we first learn that a valid team name only
contains alphanumeric characters, single hyphens ('-'), underscores ('_'), and whitespaces (' '),
and is no longer than 20 characters. We define a language type TeamNameFormat to meet the above
requirements:

TeamNameFormat = lang('TeamNameFormat', """
start: char{1,20};
char: [a-zA-Z0-9-_ ];
""")

We use this type to restrict the input values of the validator function:
def validate_teamname(value: TeamNameFormat):

...

We enable random testing of the validator function via the built-in fuzz annotation and we set
1,000 as the number of random test inputs:

fuzz(validate_teamname, 1000)

We have provided enough annotations for FLAT-PY to set up fuzz testing. FLAT-PY’s internal
program instrumentor takes care of synthesizing a proper input producer from the type signature
of validate_teamname. But due to a missing constraint that is not considered by the language type
TeamNameFormat, it is fine to see the validator crash with the BadParameter error.

To attach the missing constraint “it cannot begin or end with a hyphen or an underscore” into
the TeamNameFormat type, we define a new refinement type TeamName:

TeamName = refine(TeamNameFormat,
lambda s: not s.startswith('-') and not s.endswith('-') and \

not s.startswith('_') and not s.endswith('_'))

This type now expresses the exact set of valid team names, so that once we update the type signature
of the validator function, no more crashes are expected:

def validate_teamname(value: TeamName):
...

However, this time, FLAT-PY did find failing inputs such as 'R-_b'. In this example, as the special
characters (hyphen and underscore) are neither the first nor the last character, it indeed follows the
desired format, but is rejected by the mysterious regex. We studied this regex carefully and realized
that it encoded another constraint not mentioned in the error message: the character after the
special character must be a normal alphanumeric character, as required by the lookahead assertion
'(?=[a-z\d])' after '[\-_ ]'. Thus, 'R-_b' is rejected by the regex because '_' cannot occur after
'-'.
Following the same process, we studied the other two format validation functions in the Plat-

formIO Core project: validate_username and validate_password.
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Table 1. Summary of testing format validation functions. LoA: lines of annotations. LoC: lines of code.𝑇𝑃 : time
of producing random inputs (seconds). 𝑇𝐶 : time of executing the code with instrumented checks (seconds).
𝑇𝑂 : time of executing the original code without checks (seconds).

Function LoA/LoC Passed/Total 𝑇𝑃 (s) 𝑇𝐶 (s) 𝑇𝑂 (s)

validate_username 6/13 993/1000 32.857 64.514 0.001
validate_password 5/9 1000/1000 9.457 8.406 0.001
validate_teamname 8/13 993/1000 12.043 19.894 0.001

Results of FLAT-PY. Table 1 summarizes the results. For RQ1, one may measure the annotation
burden by the ratio of LoA to LoC. On the three functions we studied, the ratio is less than 1.0.
However, it may exceed 1.0 and vary depending on the code and what we wish to test. FLAT-PY
tries to reduce user burden by offering convenient EBNF-style notations and accepting Python
expressions directly as semantic constraints. And for this case, the required annotations are clear
from the code comments. To this extent, we find attaching annotations is usually intuitive and
pleasant.

For RQ2, FLAT-PY identified 14 failing inputs on two validation functions, from a total of 3,000
random inputs. These random inputs were produced in 54.357 s, with an average speed of 55.2 inputs
per second. FLAT-PY is capable of catching logical bugs in real code, with the aid of language-based
test generation.
For RQ3, from the last two columns (𝑇𝐶 and 𝑇𝑂 ), we see that the instrumented checks bring

significant overhead (𝑇𝐶 −𝑇𝑂 ), increasing the time from 0.01 s to a few seconds and even a minute.
This is because the time cost of parsing is more than that of executing the original code. For functions
that takes outside inputs, to prevent potential injection attacks, this overhead is unavoidable: either
developers have to build validators (e.g., via regex matching), or FLAT-PY checks inputs against
the specified types (format validation for free). If developers choose to validate themselves (maybe
because it is more efficient than CFG parsing), FLAT-PY offers a convenient way of testing: once the
validators are well-tested, they can be used in production without FLAT-PY’s checks. These extra
CFG parsing or regex matching potentially make the code vunerable to Denial of Service (DoS)
attacks. Developers should secure their systems using best industry practices such as monitoring
and rejecting malicious inflows before they reach the parsing stage.

Testing with ISLa. One may realize the same functionality without our FLAT-PY tool, for example,
to write testing code that first produces random inputs with the aid of a fuzzer like ISLa, and then
sends them to the target function.
To use the ISLa solver for test generation, we need to provide a grammar with optional ISLa

constraints. For better efficiency, we define this grammar in a different manner:
import string
ALPHA_NUM = reduce(lambda c1, c2: f'"{c1}" | "{c2}"',

string.ascii_letters + string.digits)
grammar = f"""
<start> ::= <normal> | <normal><chars><normal>
<chars> ::= "" | <char><chars>
<normal> ::= {ALPHA_NUM} | " "
<char> ::= <normal> | "-" | "_"
"""

constraint = 'forall <chars> s in start: str.len(s) <= 18'
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As required by ISLa, the grammar is written in Backus-Naur Form (BNF), where terminals are double-
quoted (e.g., "-") and nonterminals are angle-bracketed (e.g., <normal>). The constraint “a term name
cannot begin or end with a hyphen or an underscore” is reflected in the grammar: in the <start>

rule, the first and the last character of the sentence are both <normal> characters—alphanumeric
(defined as ALPHA_NUM) or ' '. For any other <char> in the middle, special characters '-' and '_'

are allowed. To express there are at most 18 such middle <char>s (so that the entire length is no
longer than 20), we define a recursive rule <chars> and attach an additional ISLa constraint for
bounding the length. From this grammar and constraint we instantiate an ISLa solver:

from isla.solver import ISLaSolver
solver = ISLaSolver(grammar, formula=constraint)

Using this solver, we write testing code that feeds 1,000 random inputs (obtained by the solve

method) to the validator function, collecting all failing_inputs:
failing_inputs = []
for _ in range(1000):

inp = str(solver.solve())
try:

validate_teamname(inp)
except BadParameter:

failing_inputs.append(inp)

Comparison. FLAT-PY saves developer’s time and effort in the following aspects:
• EBNF-style grammars make it easier and more convenient to specify syntaxes, especially
with repetitions and loops;

• FLAT-PY directly accepts Python expressions as constraints, thus no need to learn a new
specification language such as the ISLa constraint language;

• No need to write code for setting up fuzzers and collecting testing results, as FLAT-PY will
synthesize them automatically.

Key takeaways. From the above comparison, we see that the fuzz annotation in FLAT-PY re-
duces user burden in language-based test generation. Although one has to specify the language
types, the process is usually intuitive as the required formats should be known, either formally or
informally. Informal natural language descriptions can be converted into formal language types in
a straightforward manner. To test format validators implemented by potentially complex regex
patterns, FLAT-PY helps to uncover any inconsistency between the regex patterns and the natural
language descriptions.

6.2 File Path Safety
Operating systems provide system APIs to process files, and file paths are usually represented as
strings. Safety checking is needed to prohibit security issues, for instance, unexpectedly deleting a
file located in a system folder.
The following function9 rejects any access to an “unsafe” file that is outside the trusted code/

folder, hence to avoid the situation where a system file is accidentally deleted:
1 def safepath(path: str) -> str:
2 base = os.path.abspath("code")
3 file = os.path.abspath(os.path.join(base, path))
4 if os.path.commonpath([base, file]) != base:
5 print(f"ERROR: Tried to access file '{file}' outside of code/ folder!")

9https://github.com/macazaga/gpt-autopilot/blob/b782a1c7005eadb3f93f4dbd1f56cdf499ed265b/helpers.py#L15
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6 sys.exit(1)
7 return path

The expected behavior of safepath is that: if the relative path (to the base path code/) is indeed
unsafe, then the function exits (and raises a SystemExit exception), otherwise it returns the path itself.
FLAT-PY offers a special decorator raise_if(exc_type, predicate) to check that if the predicate

holds for the input arguments, then the function must raise an exception of type exc_type. We use
raise_if and ensures to attach post-conditions:

@raise_if(SystemExit, lambda path: not is_safe(path))
@ensures(lambda path, ret: ret == path)
def safepath(path: RelPath) -> RelPath:

...

And we wish to fuzz it as we did in §6.1:
fuzz(safepath, 1000)

The remaining problems are how to define a grammar for relative paths and a predicate that
decides if a path is safe or not. Starting at the base folder code/, a relative path can be constructed
via a sequence of one of the folder changing operations:

• entering a new folder: as the choice of the folder name is very unlikely to affect the behavior
of the testing function, we simply pick a representative name "foo" here;

• going back to the parent folder via "..": this is where one can move outside the code/ folder;
or

• staying at the current folder via ".".
Thus, we introduce a new language type RelPath for relative paths as follows:

RelPath = lang('RelPath', """
start: (part "/")*;
part: "foo" | ".." | ".";
""")

We observe that once we move outside of the base path, we will not be able to return again, and
thus the path is unsafe. To keep track of where we are, we use a counter level with initial value 0,
and:

• increase it by one if entering a new folder;
• decrease it by one if going back to the parent folder; or
• do nothing if staying at the current folder.

If level < 0, we immediately know the path is unsafe. We implement the procedure above as a
safety decision function in Python:

def is_safe(path: RelPath) -> bool:
level = 0
for part in select_all(xpath(RelPath, '..part'), path):

match part:
case 'foo':

level += 1
case '..':

level -= 1
if level < 0:

return False

return True
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Note that we use our built-in function select_all and an XPath '..part' to extract the parts from
parse trees.

Results. For RQ1, we added (or edited) 19 lines of the annotations to the original 7 lines of code,
where the ratio of LoA to LoC (= 2.7) exceeds 1.0. This is mostly due to a nontrivial semantic predicate
is_safe, but itself is not hard to specify in Python once we have the observation. Sometimes, such
user burden is inevitable if we need to thoroughly test the logical behavior of the program. For
RQ2, FLAT-PY did not find any failing inputs. For RQ3, we measured the three time metrics as
defined in Table 1: 𝑇𝑃 = 0.383 s, 𝑇𝐶 = 0.340 s, and 𝑇𝑂 = 0.006 s. The overhead was significant but
can be turned off in production after the code is well-tested.

Key takeaways. This case study shows the high expressiveness of FLAT-PY in refining types: the
refinement can be any Python predicate, thus allowing complex logical properties to be expressed,
which makes it possible to test nontrivial logical behaviors. In the future, we will use these annota-
tions to eventually verify the functional correctness at compile time. Such complex properties are
totally optional in FLAT-PY: developers may choose to what extent they wish to specify the types
and properties, on partial arguments (and return values) for only a few functions, depending on
their own goals. The annotations can be gradually refined and augmented over time.

6.3 File Path Sanitization
Another situation where unsafe file paths cause security issues is the existence of certain nonstan-
dard, dangerous characters, which may cause damage to the file system or lead to shell command
injection. We study a function10 that sanitizes a potentially unsafe path into a safe version, free of
certain dangerous characters (see docstring for details):

def safepath(path: str) -> str:
"""
Returns safe version of path.
Safe means, path is normalised with func:`normpath`, and all parts are
sanitised like this:
- cannot start with dash ``-``
- cannot start with dot ``.``
- cannot have control characters: 0x01..0x1F (0..31) and 0x7F (127)
- cannot contain null byte 0x00
- cannot start or end with whitespace
- cannot contain '/', '\', ':' (slash, backslash, colon)
- consecutive whitespaces are folded to one blank
"""
... # 11 lines of code elided

Our goal is to test if safepath can always returns a sanitised path for any potentially dangerous
path, so we need to define new language types Path and SanitizedPath for each of them, and refine
the type signature of safepath:

def safepath(path: Path) -> SanitizedPath:
...

Again, we will apply the fuzzing technique for detecting bugs:
fuzz(safepath, 1000)

Input grammar. To define a grammar for Path, let us extend the grammar for RelPath defined in
§6.2 with absolute paths and more general file names with ASCII characters:

10https://github.com/joeken/Parenchym/blob/63864cdaff76b9aa1b8dbe795eb537b5be5add3a/pym/lib.py#L374
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Path = lang('Path', """
start: "/" | "/"? part ("/" part)*;
part: (%x0-2E | %x30-7F)*;
""")

As the parent folder '..' and the current folder '.' are both just ASCII strings, each part is simply
an ASCII character sequence without the Unix separator '/' (of code point 0x2F). Here we encode
this using a special clause supported by FLAT-PY of the form “%x𝑘1-𝑘2”, inspired by RFC 5234
(Augmented Backus–Naur form), to mean any character in between the hexadecimal code points
𝑘1 and 𝑘2 (both inclusive).

Output grammar. A SanitizedPath is still a Path but without certain characters (at certain places)
as detailed in the docstring of safepath. We define SanitizedPath as a refinement type based on
Path:

SanitizedPath = refine(Path, is_sanitized)

where the refinement predicate is defined as follows:
def is_sanitized(path: Path) -> bool:

parts = select_all(xpath(Path, '..part'), path)
return not any(

[part.startswith('-') or part.startswith('.') or part.startswith(' ') or
part.endswith(' ') or
any([is_not_allowed(ch) for ch in part]) or
(' ' * 2) in part
for part in parts])

It checks if no part violates the constraints listed in the docstring:
• starts with dash ('-'), dot ('.'), or whitespace (' ');
• ends with whitespace;
• contains any control characters, null byte, slash ('/'), backslash ('\\'), and colon (':'), as
defined in an auxiliary predicate is_not_allowed (see below);

• contains consecutive whitespaces, i.e., at least two whitespaces (' ' * 2).
The auxiliary predicate is_not_allowed is defined as follows:
def is_not_allowed(char: str) -> bool:

return ord(char) in range(0, 31 + 1) or ord(char) == 127 or
char in {'/', '\\', ':'}

With the input and output grammars, we are ready to fuzz safepath. The fuzzer did not produce
any failing input. However, we found this testing inadequate due to the potentially low coverage
of “unusual” inputs containing the not-allowed characters, as the fuzzer would instead choose a
normal character (like alphanumeric characters) with a higher probability.

Input grammar, revised. To increase the frequency of such unusual inputs, which are more likely
to uncover bugs, we refine Path as a subtype UnusualPath:

UnusualPath = lang('UnusualPath', """
start: "/" | "/"? part ("/" part)*;
part: char*;
char: [abAB0] | [-.\\: ] | %x0-4;
""")

In contrast to Path, this UnusualPath type only considers a subset of chars, which are divided into
three groups, each containing a small but the same number of (five) characters as representatives,
and hence is chosen by the fuzzer with an equal probability:
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Table 2. Failure test cases of safepath.

# Input path Length Output Constraint violated

1 '/\x03:..a' 6 '..a' start with '.'

2 '/\x00\x040//:-/\x00\\\x01/' 13 '0/-' start with '-'

3 ':-/\\B0/./\x03B\x02\x00\x04/' 15 '-/B0/B' start with '-'

4 '//:.\x03\x01\x030//b' 11 '.0/b' start with '.'

5 '/:\\-' 4 '-' start with '-'

6 '/-.:-\\\\' 7 '-' start with '-'

7 ':-\x03:' 4 '-' start with '-'

8 '\\-:' 3 '-' start with '-'

• normal alphanumeric characters {'a', 'b', 'A', 'B', '0'},
• control characters from code point 0x0 to 0x5 (in Python syntax, they are represented as
'\x01' to '\x04'), and

• special characters {'-', '.', '\\', ':', ' '} that are not allowed anywhere.
Without changing the type signature of safepath, i.e., a function from Path to SanitizedPath,

we tell the fuzz function to generate random paths using the above UnusualPath by specifying the
optional argument using (where lang_generator convert a language type to a Generator):

fuzz(safepath, 1000, using={'path': lang_generator(UnusualPath)})

This time, we identified failing inputs (will be shown soon).

Results. For RQ1, we added (or edited) 23 lines of the annotations to the original 31 lines of code
(i.e., LoA/LoC = 0.75). Like in §6.1, the required annotations are clear from code comments so we
performed a straightforward translation.

For RQ2, FLAT-PY found 8 failing inputs, with lengths 3-15. The information of these failure test
cases is summarized in Table 2. For each test case, the table lists the input argument path (we fix
the argument sep to be the Unix path separator '/') with its length, the output, and the violated
condition that explains why the output is not sanitized. The common failure reason is that the
outputs start with a disallowed character (here, '-' or '.').
For RQ3, we measured three time metrics as defined in Table 1: 𝑇𝑃 = 1.071 s, 𝑇𝐶 = 4.755 s, and

𝑇𝑂 = 0.001 s. The overhead was significant but can be turned off in production after the code is
well-tested.

Key takeaways. This case study shows how to refine language types for the purpose of testing in
the fuzz annotation, without changing the type signature of the target function, which serves as a
contract of the function. The effort we put in defining the UnusualPath type paid off as we increased
the chance of hitting edge cases. Such effort is still necessary if we use a traditional language-based
test generation tool. FLAT-PY makes it easier by offering built-in functions to construct customized
input generators, which can be passed as options to the fuzz annotation.

6.4 Threats to Validity
External validity is the major threat in our case studies: there are only three cases and we are
unsure if the same results can be generalized to other codebases, in particular the annotation burden
may vary. When the tested code becomes more complex, one may put more effort on tuning the
annotations (as in §6.3) to uncover more interesting bugs. However, one does not have to do so at
the very beginning but refine the annotations iteratively: start with attaching grammars merely,
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check for potential format violations, fix them, and refine the annotations to gradually consider
more and more semantic correctness. In this way, the annotation effort will be under control.

7 RELATEDWORK
Safe strings. It is a widespread problem that many strings have latent structure but type checkers

of mainstream programming languages cannot reach it. The TypeScript community introduces
regex-validated strings to guarantee that a string value must match a given regex. However, the
memory of that structure is discarded after validation and thus cannot be further reused. To address
this issue, Kelly et al. [13] present SafeString, a programming model where one specifies the latent
structure as a grammar, and once a string is validated using a parser, its underlying structure is
stored as an object in the memory so that rechecking is saved when updates come.

Both SafeString and our FLAT aim to improve the type safety of strings by exposing their latent
structures. The major difference lies in the level of automation. SafeString defines an interface for
safe strings. But it is the programmer’s responsibility to realize a particular kind of safe string: to
specify its structure, to build its parser, and to define a group of type-safe operations if needed.
Therefore, it fits better when developing new software and refactoring existing codebases. On
the other hand, FLAT is an extension to the type system of an existing programming language,
offering users annotations to attach types and specifications. Apart from annotations, no additional
code is mandatory in FLAT: parsers are automatically derived from grammars, and standard string
operations apply to language types. Type checking is automated. To this end, FLAT applies to
legacy codebases as well.
June [2] is a follow-up work of SafeString. It exposes the latent structure of strings to test

generation tools via annotation-driven code transformation and equips them with built-in safe
string annotations for delimited strings, file paths, emails, dates, etc, each of which is implemented
as a safe string definition by subclassing the core SafeString class. Compared with SafeString, June
is burdenless if using the built-in safe strings merely. When it comes to other kinds of safe strings,
it inherits the inconvenience of SafeString too— the user has to subclass SafeString to realize the
custom definition. In contrast, FLAT provides a principled type system where one defines new
types in a declarative and simple way.

Refinement types. The concept of refinement typeswas first invented inML’s type systems [5]. The
refinement type system allows more errors to be exposed at compile time, by refining user-defined
algebraic data types in standard ML. For instance, a singleton list as a subtype of list.
A more modern style of refinement types is Logically Qualified Data Types [18], abbreviated

to Liquid Types. Liquid types allow programmers to enjoy many of the benefits of dependent
types with minor annotation effort, by encoding refinements as first-order logic predicates, with
standard operations on common data types such as integers, bit vectors, and arrays. This idea is
then introduced in many other programming languages, like Haskell [22], TypeScript [23], and
Java [6]. However, none of them have focused on how to refine the string type to inject syntactic
and semantic requirements of strings, as FLAT does.

Primitive obsession. There are conceptually different types like file paths and UUIDs but are
represented into a single built-in type “string”. Such a code smell is called “primitive obsession”
[10, 20] and is considered a bad practice to use one primitive type for values with conceptually
different types.
One possible solution is to define new types that are distinguishable by the type system. For

instance, in an object-oriented language, one may use two separate class types Path and UUID,
instead of the primitive string type, to distinguish file paths from UUIDs. This solution brings
abstraction overhead (both for developers and runtime): one needs to wrap up a string into a
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Path object and when processing, unwrap the string value. Scala 3 introduces opaque types [3] for
defining aliases as conceptually different types from a primitive type. This distinction is made only
at the type-system level for type safety but not at runtime for efficiency.

The above idea of distinguishing types using names is more like a nominal approach, while FLAT,
which adopts a refinement type system, is a structural approach—the refinement type itself conveys
structural information about the valid value set.

Language-based testing. Test generation has been studied for a long to improve test coverage and
reduce human labor by automatically producing test inputs. To fit programs accepting structural text,
such as compilers and interpreters, syntax-aware, grammar-based input generation has been studied.
Godefroid et al. [7] present grammar-based white-box fuzzing, which increases the test coverage on
Internet Explorer 7 JavaScript interpreter. CSmith [24] generates random C programs from a subset
of the C grammar with hand-crafted generators, which detected hundreds of correctness bugs in
mainstream C compilers like GCC and LLVM. LangFuzz [11] enables black-box fuzzing based on a
CFG, and discovers security issues on the Mozilla JavaScript engine.

The above grammar-based test generators can produce syntactically valid inputs, but sometimes
semantics validity is also important. Input algebras [9] allows one to express semantic requirements
as a Boolean combination of patterns, serving as a specialization of the original CFG. A grammar
transformer computes the specialized grammar, from which any standard grammar-based fuzzer
can produce inputs conforming to the requirements. ISLa [21], on the other hand, natively supports
semantic constraints expressed in its specification language, which is essentially a first-order logic
over derivation trees of strings. These language-based, semantic-aware fuzzers enable type-directed
testing in FLAT: types are translated into a CFG with logical constraints that depict the valid input
space, from which random inputs are produced for testing.

Language mining. FLAT relies on user annotations to check correctness at runtime. The out-of-
the-box FLAT built-in types and the rich EBNF notations ease the process of adding user annotations,
but if they could be automatically inferred, our approach would become even more attractive. The
key problem to realize this is language mining—automatically learning grammars from programs
or examples.
Schröder and Cito [19] propose a static and automated grammar inference system for ad hoc

parsers. Their intuition is that ad hoc parsers are usually language recognizers and internally
maintain state machines for parsing. Through a collection of the constraints that the input must
fulfill from the parser code, they construct a regular expression 𝑟 as the inferred language accepted
by the parser. Annotating this parser function with input type 𝑟 , FLAT can test both the parser
function itself and other functions referring to it.
There are also dynamic approaches that mine input grammars from a set of positive examples.

Autogram [12] uses dynamic tainting to track the data flow from the input string to its fragments
found during execution. A grammar that describes the hierarchical structure of the fragments is
generalized from the structure of the call tree. However, if any fragment of the input is not stored in
some variable, there will be no data flow to learn from. Mimid [8] tackles this problem by tracking
all accesses of individual characters in the input, regardless of their usage. Arvada [14] targets a
black-box setting where the program code is unavailable. Instead, it relies on an oracle to tell if an
input is valid or not. It attempts to create the smallest CFG possible consistent with all examples,
via tree bubbling and merging.

8 CONCLUSION AND FUTURE DIRECTIONS
String is a universal type used to encode all kinds of data that indeed have different latent structures.
To distinguish them, we propose FLAT, regarding formal languages as types. Such language types
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expose the underlying syntactic structure of strings. With semantic constraints as refinements,
context-sensitivity is also taken into account. Such an expressive type system allows us to catch
bugs as early as possible, and meanwhile, to automatically generate random inputs that conform to
the user’s assumptions, higher the chances of hitting more interesting and deeper bugs.

We implement FLAT in Python and present a practical testing framework FLAT-PY.We conducted
case studies on real Python code fragments and detected logical bugs via random testing based
on a reasonable amount of user annotations. The source code and experimental data are publicly
available:

https://github.com/flatypes/flat-py.
Our future research directions of the FLAT framework will focus on extensions, empirical studies,

and applications:
Static checking. While FLAT-PY’s dynamic checking helps to catch bugs, the other side of

the coin, static checking, is also important to guarantee the correctness of programs at
compile time. We will explore the static type checking of formal language types in near
future, leveraging techniques from program analysis and formal verification.

Empirical studies of annotation burden. We have seen that a reasonable amount of anno-
tations required by FLAT gain benefits in testing, but it is still unclear how much annotation
burden is needed in the wild. For this, we plan to conduct empirical studies to investigate
several interesting questions: how often developers use standard/custom string formats, how
complex their grammars are, and to which extent Large Language Models (LLMs) help in
inferring the annotations?

XML schemas. There are DSLs that can express the intended latent structure of specific types
of strings, such as XML schemas. In theory, every XML schema defines a sub-language of the
XML language, hence can be expressed as a language type in FLAT. We plan to study how to
build a converter from XML schemas (and other similar DSLs) to language types.

Porting to other languages. Apart from Python, there are many other programming lan-
guages like Java and JavaScript where string manipulation is common and thus FLAT can
be useful. We are interested in realizing FLAT in these languages and understanding the
technical and engineering challenges and gaps.
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