
262

Automated Ambiguity Detection in Layout-Sensitive

Grammars

JIANGYI LIU∗, Tsinghua University, China
FENGMIN ZHU∗, Tsinghua University, China and CISPA Helmholtz Center for Information Security,

Germany

FEI HE†, Tsinghua University, China, Key Laboratory for Information System Security, Ministry of Education,

China, and Beijing National Research Center for Information Science and Technology, China

Layout-sensitive grammars have been adopted in many modern programming languages. In a serious language
design phase, the speci�ed syntax—typically a grammar—must be unambiguous. Although checking ambiguity
is undecidable for context-free grammars and (trivially also) layout-sensitive grammars, ambiguity detection,
on the other hand, is possible and can bene�t language designers from exposing potential design �aws.

In this paper, we tackle the ambiguity detection problem in layout-sensitive grammars. Inspired by a
previous work on checking the bounded ambiguity of context-free grammars via SAT solving, we intensively
extend their approach to support layout-sensitive grammars but via SMT solving to express the ordering and
quantitative relations over line/column numbers. Our key novelty lies in a reachability condition, which takes
the impact of layout constraints on ambiguity into careful account. With this condition in hand, we propose
an equivalent ambiguity notion called local ambiguity for the convenience of SMT encoding. We translate
local ambiguity into an SMT formula and developed a bounded ambiguity checker that automatically �nds a
shortest nonempty ambiguous sentence (if exists) for a user-input grammar. The soundness and completeness of
our SMT encoding are mechanized in the Coq proof assistant. We conducted an evaluation on both grammar
fragments and full grammars extracted from the language manuals of domain-speci�c languages like YAML
as well as general-purpose languages like Python, which reveals the e�ectiveness of our approach.

CCS Concepts: • Software and its engineering→ Syntax; Parsers; •Theory of computation→Grammars

and context-free languages; Constraint and logic programming.

Additional Key Words and Phrases: layout-sensitive grammar, ambiguity, SMT, Coq

ACM Reference Format:

Jiangyi Liu, Fengmin Zhu, and Fei He. 2023. Automated Ambiguity Detection in Layout-Sensitive Grammars.
Proc. ACM Program. Lang. 7, OOPSLA2, Article 262 (October 2023), 26 pages. https://doi.org/10.1145/3622838

1 INTRODUCTION

Layout-sensitive (or indentation-sensitive) grammars were �rst proposed by Landin [1966]. Nowa-
days, they have been adopted in many programming languages, e.g., Python [Van Rossum and
Drake 2011], Haskell [Marlow et al. 2010], F# [Syme et al. 2010], Yaml [Evans et al. 2014] and

∗Both authors contributed equally to this work.
†Corresponding author.

Authors’ addresses: Jiangyi Liu, School of Software, Tsinghua University, Beijing, 100084, China, liujiang19@mails.tsinghua.
edu.cn; Fengmin Zhu, School of Software, Tsinghua University, Beijing, 100084, China and CISPA Helmholtz Center for
Information Security, Saarbrücken, Saarland, 66123, Germany, fengmin.zhu@cispa.de; Fei He, School of Software, Tsinghua
University, Beijing, 100084, China and Key Laboratory for Information System Security, Ministry of Education, Beijing,
China and Beijing National Research Center for Information Science and Technology, Beijing, China, hefei@tsinghua.edu.cn.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for pro�t or commercial advantage and that copies bear this notice and
the full citation on the �rst page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).

© 2023 Copyright held by the owner/author(s).
2475-1421/2023/10-ART262
https://doi.org/10.1145/3622838

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 262. Publication date: October 2023.

This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
HTTPS://ORCID.ORG/0000-0001-6525-4659
HTTPS://ORCID.ORG/0000-0003-4219-0837
HTTPS://ORCID.ORG/0000-0002-4266-875X
https://doi.org/10.1145/3622838
https://orcid.org/0000-0001-6525-4659
https://orcid.org/0000-0003-4219-0837
https://orcid.org/0000-0002-4266-875X
https://doi.org/10.1145/3622838

262:2 Jiangyi Liu, Fengmin Zhu, and Fei He

Markdown [Gruber 2012]. These grammars are also introduced as new features during language
evolution, e.g., indentation rules now have been introduced in Scala 31. Although this amazing
feature gives rise to a stylized, structural, and elegant syntax, due to the presence of layout con-
straints, indentations and whitespaces intensively a�ect how a program should be parsed, and this
brings more di�culties and challenges in the study of layout-sensitive grammars than context-free

grammars (CFGs), where indentations and whitespaces do not matter.
To avoid those di�culties and challenges, some languages choose to use limited layout features

so that their grammars are reducible to CFGs. For instance, Python’s grammar can be viewed
as context-free (and parsed by a PEG parser) once a preprocessor (implemented in the CPython
interpreter) converts all whitespaces and tabs into special INDENT/DEDENT tokens. However, such a
method does not work for all layout-sensitive languages, especially those with more complex layout
features. One example is YAML, whose lexer manually deals with whitespaces and indentations in
an ad-hoc way. Moreover, languages like Haskell cannot even be parsed with context-free PEG
parsers. Therefore, we believe that layout-sensitive grammar is an area worth investigating.
One problem that has been discovered in this area is layout-sensitive parsing [Adams 2013;

Amorim et al. 2018; Erdweg et al. 2013]. To apply these parsing techniques, one must, �rst of all,
have the grammar formally speci�ed. In a serious language design phase, this grammar should
be unambiguous. Due to the presence of layout constraints, manually checking the ambiguity
(especially for large grammars) is tedious and error-prone. Therefore, tool support for ambiguity
checking is essential to reduce human labor and to expose (and even to avoid) human mistakes.
Apparently, the most ideal way is to prove the unambiguity. Unfortunately, this is impossible:

telling if a CFG is ambiguous or not is already undecidable [Chomsky and Schützenberger 1963;
Hopcroft et al. 2001] so it is even harder for layout-sensitive grammars, which are more expressive
than CFGs. However, for CFGs, an alternative method does exist for ensuring unambiguity: proving
this CFG belongs to a known unambiguous fragment such as !!(:) [Aho et al. 1986] or !'(:)
[Knuth 1965]. This method is non-universal in the sense that if the CFG does not belong to any
known unambiguous fragment, no conclusion can be drawn. When it comes to layout-sensitive
grammars, unfortunately, what could be an unambiguous fragment has not yet been investigated
so far (to the best of our knowledge).

On the other hand, the bounded ambiguity checking problem—determining whether a grammar
contains an ambiguous sentence within a given length—is both universal and solvable. This problem
gives ways to ambiguity detection, i.e., to �nd ambiguous sentences. Suppose a language designer
uses an ambiguity detection tool to check their syntax speci�cation, then any discovered ambiguous
sentence will immediately expose potential design �aws. Fixing these issues helps avoid future
bugs and vulnerabilities caused by ambiguous syntax.
Axelsson et al. [2008] have studied bounded ambiguity checking on CFGs. In this paper, we

intensively extend their approach for layout-sensitive grammars. In their work, bounded ambiguity
is encoded as a propositional formula and checked via SAT solving. Inspired by the use of constraint
solving—and more importantly, to achieve automation—we �nd SMT (Satis�ability Modulo Theo-
ries) solving suitable for layout-sensitive grammars: layout constraints are expressed by ordering
(e.g., <, >, =) and quantitative relations over the line and column numbers and these relations are
encodable in integer di�erence logic, a theory that a majority of SMT solvers support.

To apply SMT solving, the central technical problem is to encode bounded ambiguity as an SMT
formula. Because directly encoding the standard notion of ambiguity—“there exist two (or more)
di�erent parse trees”—is hard, Axelsson et al. [2008] instead consider an alternative condition that
is easier to encode: “there exist two subtrees that di�er in a node on level 1”. We tried to apply

1https://docs.scala-lang.org/scala3/reference/other-new-features/indentation.html

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 262. Publication date: October 2023.

https://docs.scala-lang.org/scala3/reference/other-new-features/indentation.html

Automated Ambiguity Detection in Layout-Sensitive Grammars 262:3

this condition to layout-sensitive grammars, but found it unsound—insu�cient to prove ambiguity.
This is due to the neglect of the required ful�llment of layout constraints. In other words, their
approach does not directly apply to layout-sensitive grammars; we need to extend it intensively.
Our solution is to add a reachability condition that takes the impact of layout constraints on parsing
and ambiguity into careful account. With the reachability condition in hand, we propose local
ambiguity, a de�nition that is logically equivalent to the standard ambiguity while being convenient
for SMT encoding.
Through a translation of local ambiguity, we obtain an SMT encoding for bounded ambiguity.

This encoding is sound and complete on acyclic grammars. Being acyclic is not a strong assumption:
well-designed grammars should all have this nice property. Based on this encoding, we have
developed a bounded ambiguity checker that accepts a user-speci�ed grammar as input (with a
con�gurable bound); it either generates the shortest nonempty ambiguous sentence or proves the
bounded unambiguity. When an ambiguous sentence is produced, our checker also yields all its
parse trees, which eases the process of understanding the cause of ambiguity and resolving it. We
believe this feature is helpful for language designers to detect and enhance potential design �aws
in an early stage of language development.
Our de�nition of local ambiguity, our encoding of bounded ambiguity and all related lemmas

and theorems have been formulated and proved in the Coq proof assistant. The main theorems
we have shown are: (1) local ambiguity is logically equivalent to the standard notion of ambiguity
(Theorem 4.5); (2) our encoding is sound and complete for any acyclic layout-sensitive grammar
(Theorems 5.9 and 5.10). In our formulation, a layout-sensitive grammar is represented by a layout-
sensitive binary normal form (De�nition 3.1) that allows not just layout constraints but any decidable
predicate. This reveals that all of our theoretical results apply not just to layout-sensitive grammars—
our focus of this paper—but any “CFG + decidable predicates”, e.g., data-dependency grammars

[Jim et al. 2010]. As a side product, if the predicates are furthermore encodable in SMT theories,
our bounded ambiguity checker can be extended (in a rather straightforward way) to bene�t the
audiences of data-dependency grammars.

We conducted an evaluation on grammars extracted from �ve popular programming languages:
Python, SASS, YAML, F# and Haskell. Our dataset consists of 25 grammars: 5 seed grammars (one
for each language) and 20 variants (four for each seed grammar). For Python and SASS, we collected
their full grammars. For the other three languages, we collected grammars fragments that involve
interesting layout features. On this dataset, our bounded ambiguity checker generated ambiguous
sentences with lengths varying from 2 to 11. Manually inspecting the corresponding parse trees,
we found it not hard to understand the cause of ambiguity and resolve it by adding more layout
constraints to the input grammar.

Contributions. To sum up, this paper mainly makes the following technical contributions:

• We propose local ambiguity, an equivalent notion for ambiguity that is SMT-friendly (§4).
• We present an SMT encoding for checking bounded ambiguity of layout-sensitive grammars,
with which an automated bounded ambiguity checker was developed (§5).

• We formally proved the soundness and completeness of the SMT encoding on acyclic grammars
in the Coq proof assistant (§6).

• We conducted an evaluation on real-world grammars and their variants, which reveals the
e�ectiveness of our approach (§7).

We start in §2 with an overview of our approach by example, provide background knowledge in
§3, discuss related work in §8, and �nally conclude in §9. See the end of the paper for a link to our
open-source artifact that contains the proofs, the tool, the evaluation dataset and the results.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 262. Publication date: October 2023.

262:4 Jiangyi Liu, Fengmin Zhu, and Fei He

2 A MOTIVATING EXAMPLE

In this section, we present a concrete scene to showcase how our bounded ambiguity checker can
detect ambiguity, and how a generated ambiguous sentence with its parse trees can help a user
understand the cause of ambiguity so that they will be able to further resolve the ambiguity.
Imagine a user is now designing an imperative language where a block is de�ned as a list

of statements that are aligned with each other, where each statement (stmt) is either an empty
statement (nop) or a do-block that recursively takes a block as its body. The following extended

Backus-Naur form (EBNF) expresses the intended grammar �block (block is the start symbol):

block → ‖stmt‖+

stmt → nop | do block

As a convention, terminal symbols are in typewriter font and nonterminal symbols are in sans
serif font. To express the alignment of a sequence of elements, we lift the standard Kleene plus
operator “�+” into “‖�‖+”: it represents a sequence of elements (parsed from the nonterminal �)
that are aligned with each other, i.e., the column numbers of their �rst tokens are identical.
Due to the presence of the alignment layout constraint, this grammar is layout-sensitive. This

alignment constraint is indeed necessary because it marks the border of the do-block body. For
instance, the sentenceF1:

do nop

nop

is parsed into a block of a single do-statement whose body contains two nop statements; while the
sentenceF2:

do nop

nop

is parsed into a block of two statements, where the �rst element is a do-statement whose body
contains a single nop statement, and the second element is a nop statement. Without this alignment
layout constraint, bothF1 andF2 will be ambiguous2: the last nop statement can belong to either
the do-block (as inF1) or the top-level block (as inF2).
Now that this grammar looks perfect to distinguish between sentences likeF1 andF2, can we

conclude that it is unambiguous?

Detect ambiguity. To detect any potential ambiguity in �block, the user feeds this grammar to
our bounded ambiguity checker. The checker internally generates SMT formulae for checking the
bounded ambiguity. It does not �nd any ambiguous sentences with lengths 1 and 2, but it produces
the following ambiguous sentenceF3 with length 3:

1 do

2 nop

3 nop

In other words, �block is indeed ambiguous.

Understand the cause of ambiguity. To help the user understand why �block is ambiguous, our
bounded checker not only produces a shortest ambiguous sentenceF3 but also all of its parse trees,
as depicted in Fig. 1, where the line and column numbers of tokens are annotated by “@(;8=4, 2>;)”.

2Onemay identify this ambiguity in our bounded ambiguity checker: input the layout-free version of�block (i.e., by removing
the alignment constraint); our checker can generate the ambiguous sentence do nop nop which exhibits the ambiguity
described here.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 262. Publication date: October 2023.

Automated Ambiguity Detection in Layout-Sensitive Grammars 262:5

block

stmt+

stmt

do@(1, 1) block

stmt+

stmt

nop@(2, 1)

stmt

nop@(3, 1)

(a) parse tree C1

block

stmt+

stmt

do@(1, 1) block

stmt+

stmt

nop@(2, 1)

stmt

nop@(3, 1)

(b) parse tree C2

Fig. 1. Parse trees of the ambiguous sentence F3.

Above all, both parse trees ful�ll the alignment constraint: in tree C1, the token do at position
(1, 1) of the �rst statement (in the top-level block) is aligned with the token nop at position (3, 1)
of the second statement; in tree C2, the two nop tokens at positions (2, 1) and (3, 1) of the two
statements inside the do-block are aligned.
The reason for the ambiguity is somewhat similar to what we have discussed above: it is

insu�cient to tell whether the second nop statement belongs to the do-block (the case of C1) or the
top-level block (the case of C2), even with the presence of the alignment constraint.

Resolve the ambiguity. Since the ambiguous sentenceF3 prevents the alignment constraint from
deciding the border of the do-block, a possible way to resolve this ambiguity is to reject F3. To
achieve this, one possibility is to apply the o�side rule [Adams 2013; Landin 1966] to any do-block:
if this block contains multiple lines, then the starting column of every subsequent line must be to
the right of the starting column of the �rst line (formal de�nition will be introduced in Fig. 2 in the
next section). In this way,F3 will be rejected, but sentences that obey the o�side rule will still be
accepted, includingF1 andF2. Another instance is:

do

nop

nop

where the two nop tokens (both inside the do-block) are placed to the right of the do token. One
more example is:

do

nop

nop

where the �rst nop token (only this one is inside the do-block) is placed to the right of the do token.
Adding the o�side constraint, denoted by “·B”, to the do-block clause in the original grammar

�block, we obtain an enhanced grammar � ′
block

that resolves this ambiguity:

block → ‖stmt‖+

stmt → nop | (do block)B

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 262. Publication date: October 2023.

262:6 Jiangyi Liu, Fengmin Zhu, and Fei He

To see if another ambiguity exists, the user now inputs � ′
block

and sets a large bound, say 20. This
time, our checker will no longer �nd any ambiguous sentences within this bound. Because our
SMT encoding is complete, this shows that � ′

block
does not have any ambiguous sentences up to

length 20 (in fact, it is unambiguous). To this end, the user gains more con�dence.

Key takeaways. To conclude this section, we list some key takeaways:

• When inputting a user-speci�ed grammar, our bounded ambiguity checker can automatically

generate one shortest ambiguous sentence (if exists).
• If an ambiguous sentence is found, this exposes potential syntax design �aws and oversights,
such as the user’s lack of a proper o�side rule in �block.

• By inspecting the ambiguous sentence with its parse trees, it is usually straightforward to
identify the cause of ambiguity and further enhance the grammar by adding more layout
constraints (like the o�side rule in our example) to resolve this ambiguity.

• The above work�ow can be applied for multiple rounds until our checker no longer �nds any
ambiguous sentences up to a speci�ed length, which increases the user’s con�dence in the
designed grammar.

3 PRELIMINARIES

Before diving into the details of solving bounded ambiguity, this section provides the necessary
preliminary de�nitions and notations.

In formal language theory, a grammar� is a quadruple (#, Σ, %, (), where# is a �nite (nonempty)
set of nonterminals, Σ is a �nite set of terminals (or tokens), % ⊆ # × (# ∪ Σ)∗ is a �nite set of
production rules, and (∈ # is the start symbol.

In a CFG, a sentence (sometimes also called a word) is a token sequence. In a layout-sensitive gram-

mar, a sentence is a sequence of positioned tokens. Each positioned token has the form 0@(;8=4, 2>;),
where 0 ∈ Σ gives the terminal, and (;8=4, 2>;) gives the position (i.e., line and column number)
in the source �le. We denote an empty sentence by Y. For a nonempty sentenceF , we denote its
length by |F |. We writeF [8] to access the positioned token at index 8 , andF [8] .term,F [8] .line and
F [8] .col resp. the terminal, line number and column number.

Well-formedness. All the sentences we consider throughout the paper are well-formed: the posi-
tions of the tokens are in ascending order. Formally, for all indices 0 ≤ 8 < 9 < |F |:

(F [8] .line < F [9] .line) ∨ (F [8] .line = F [9] .line ∧F [8] .col < F [9] .col).

Note that ill-formed sentences do not physically exist: one cannot have two tokens overlap (e.g.,
[0@(1, 1), 1@(1, 1)]) or have a latter token precede a former one (e.g., [0@(1, 2), 1@(1, 1)]).

Layout constraints. A unary (resp. binary) layout constraint i is a logical predicate over one (resp.
two) sentence(s), specifying positional restrictions on tokens of the sentences. As a convention, an
empty sentence trivially satis�es an arbitrary constraint: i (Y) = true (resp. i (Y, ·) = i (·, Y) = true
for the binary case).
We support the following built-in layout constraints: alignment (binary), indentation (binary),

o�side (unary), o�side-align (a variant of o�side, unary), and single-line (unary). The �rst three are
widely used in many practical grammars and have been well-studied in previous work [Amorim
et al. 2018]. O�side-align and single-line rules are what we �nd useful in our evaluation (§7). Their
logical predicates are presented in Fig. 2, whereF [−1] denotes the last positioned token ofF .

Alignment constrains the �rst token of the two sentences to be aligned at the column. Indentation
requires the second part to have its �rst token to the right (at column) of the �rst part, and a new
line exists in between. The o�side rule was �rst proposed by Landin [1966] and later revised by

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 262. Publication date: October 2023.

Automated Ambiguity Detection in Layout-Sensitive Grammars 262:7

align(F1,F2) , (F1 ≠ Y ∧F2 ≠ Y) =⇒ F1 [0] .col = F2 [0] .col

indent(F1,F2) , (F1 ≠ Y ∧F2 ≠ Y) =⇒ F2 [0] .col > F1 [0] .col ∧F2 [0] .line = F1 [−1] .line + 1

o�side(F) , F ≠ Y =⇒ ∀C ∈ F : C .line > F [0] .line =⇒ C .col > F [0] .col

o�side-align(F) , F ≠ Y =⇒ ∀C ∈ F : C .line > F [0] .line =⇒ C .col ≥ F [0] .col

single(F) , F ≠ Y =⇒ ∀C ∈ F : C .line = F [0] .line

Fig. 2. Logical predicates of built-in layout constraints.

Adams [2013]. It restricts that in the parsed sentence, any subsequent lines must start from a column
that is further to the right of the start token of the �rst line. We also consider the o�side-align rule,
a variant of the above, where subsequent lines can start from the same column as that of the �rst
line. The single-line rule restricts the parsed sentence to be one-line.

Binary normal form. It is well-known [Lange and Leiß 2009] that every CFG can be converted to
an equivalent binary normal form. We extend this binary normal form to layout-sensitive grammars
by allowing layout constraints. As a convention, we reserve �, �,� for nonterminals, 0, 1, 2 for
tokens/terminals and i for layout constraints.

De�nition 3.1 (LS2NF). A layout-sensitive grammar is in binary normal form, called the layout-
sensitive binary normal form (LS2NF), if for every production rule, its right-hand side (called a
clause) is one of the following:

• an empty clause Y;
• an atomic clause 0, where 0 ∈ Σ;
• an unary clause �i , where � ∈ # and i is a unary layout constraint;
• a binary clause � i �, where �, � ∈ # and i is a binary layout constraint.

To avoid inconsistent layout constraints, the production rule set cannot contain the following
rules simultaneously: (1) � → �i and � → �i

′
where i ≠ i ′; (2) � → �1 i �2 and � → �1 i

′ �2

where i ≠ i ′.
For convenience, we use notations in place of rule names for built-in layout constraints: we write

• U ‖ V for U align V ,
• U � V for U indent V ,
• UB for Uo�side, UQ for Uo�side−align, and
• LUM for Usingle.

Throughout the paper, we study the ambiguity theory of layout-sensitive grammars in LS2NF,
but use EBNF to express complex grammars for better readability. We desugar the standard EBNF
operators “?” (optional), “+” (Kleene plus), and “∗” (Kleene star) into the following sets of LS2NF
production rules (where � is a fresh nonterminal symbol, and “{” means “desugars to”):

• � → �?
{ {� → �,� → Y}

• � → �+
{ {� → �,� → �,� → � �}

• � → �∗
{ {� → Y, � → �,� → � �}

We also extend Kleene plus and Kleene star operators to alignment: ‖ · ‖+ and ‖ · ‖∗. Their desugaring
rules are as follows (where � is a fresh nonterminal symbol, and “{” means “desugars to”):

• � → ‖�‖+ { {� → �,� → �,� → � ‖ �}

• � → ‖�‖∗ { {� → Y, � → �,� → � ‖ �}

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 262. Publication date: October 2023.

262:8 Jiangyi Liu, Fengmin Zhu, and Fei He

During the desugaring process, LS2NF rules are tagged with their corresponding locations in
the EBNF. In later steps, parse trees generated by our approach (using LS2NF grammar) can be
de-binarized with those attached tags. Therefore, any cognitive discrepancy between the language
designer’s view of the grammar and the internal representation can be avoided.

Parse trees. Parse trees are rooted trees (let � ∈ # be the root) inductively de�ned as follows:

C ::= empty(�) | leaf (�, 0@(8, 9)) | unary(�, C) | binary(�, C1, C2).

Branches on the right side correspond to the derivation using the empty, atom, unary, and binary
clauses. We write root (C) and word (C) to denote the root node and the represented sentence of
a parse tree C . A parse tree is said valid if it follows the production rules and ful�lls the layout
constraints:

• empty(�) is valid if � → Y ∈ % ;
• leaf (�, 0@(8, 9)) is valid if � → 0 ∈ % ;
• unary(�, C) is valid if � → root (C)i ∈ % , i (word (C)) is true and C is valid;
• binary(�, C1, C2) is valid if� → root (C1)i root (C2) ∈ % , i (word (C1),word (C2)) is true and both
C1, C2 are valid.

We say that a parse tree C witnesses a derivation from a nonterminal � to a sentenceF , denoted
as “C ⊲�⇒∗F”, if C is valid, root (C) = � and word (C) = F . Using the above notions, the usual notion
of derivation “�⇒∗ F” is a short-hand for “∃C, C ⊲�⇒∗ F”.

Derivation ambiguity. We say the derivation � ⇒∗ F is ambiguous if there exist at least two
di�erent parse trees that witness � ⇒∗ F . In this way, the bounded ambiguity problem can be
restated as follows: for a given bound : , is there a sentenceF such that |F | ≤ : and the derivation
(⇒∗ F is ambiguous?

4 LOCAL AMBIGUITY

To generate ambiguous sentences via SMT solving, the key technical problem is to construct an SMT
formula Φ(:) such that it is satis�able if and only if there exists an ambiguous sentence of length
: , and that every satisfying model corresponds to such an ambiguous sentence. The most direct
approach is to encode derivation ambiguity—“there exist two di�erent parse trees that both witness
the derivation”—but how to encode the existence of those trees is challenging. Generally speaking,
the node pair that shows the di�erence can appear at an arbitrary level (or depth). Enumerating
every possibility is sophisticated and ine�cient.
An indirect but more e�cient approach could be, use an alternative de�nition that is logically

equivalent to derivation ambiguity while being conveniently encodable in SMT theories. In this
section, we will propose such a de�nition which we call local ambiguity. This de�nition will
eventually allow us to construct a sound and complete SMT encoding for the bounded ambiguity
checking problem (will be discussed in §5).

4.1 Motivation: A Failing A�empt

Our �rst attempt is to apply Axelsson et al. [2008]’s bAMB condition3 that applies to reduced4 CFGs.
The bAMB condition is stated as: “there exists a nonterminal � and a sentenceF such thatF has
at least two di�erent (valid) parse trees rooted at � and they di�er in a node on level 1”. Since
parse trees are visual representations of derivations, such two trees correspond to two distinct

3In their paper, “bAMB” stands for “bounded ambiguity”. We stick to the abbreviation “bAMB” here because the term
“bounded ambiguity” has a di�erent meaning in this paper.
4A CFG is said to be reduced if all nonterminal symbols are reachable from the start symbol.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 262. Publication date: October 2023.

Automated Ambiguity Detection in Layout-Sensitive Grammars 262:9

�

�1

�

2@(1, 1)

�

2@(2, 1)

C1 (valid)

�

�2

�

2@(1, 1)

�

2@(2, 1)

C2 (valid)

(

C1

)1 (invalid)

(

C2

)2 (invalid)

Fig. 3. A counterexample where bAMB is unsound.

derivations ofF : using either two distinct production rules for �, or one rule in two distinct ways.
In terms of logical constraints, bAMB is weaker than derivation ambiguity: (1) � is existentially
quanti�ed, thus can be any nonterminal; (2) the two parse trees di�er in a node just below (i.e.,
a child of) their root � (a determined and shallow location). In this way, bAMB is conveniently
encodable in SMT theories.
In order to use bAMB as an alternative de�nition, we must show that “bAMB ⇔ derivation

ambiguity”. The ⇐-part is trivial as we have seen that bAMB is weaker. The ⇒-part, however,
does not always hold for layout-sensitive grammars, meaning the bAMB condition is unsound. To
see this, we construct the following counterexample—an LS2NF ((is the start symbol) that ful�lls
bAMB but is indeed unambiguous:

(→ L�M � → �1 � → �2 �1 → � ‖ � �2 → � � � → 2

The bAMB condition holds because the sentenceF∗
, [2@(1, 1), 2@(2, 1)] (note the two tokens

are aligned) has two di�erent (valid) parse trees rooted at �, i.e., C1 and C2 depicted in Fig. 3, that
di�er in a node on level 1 (i.e., �1 v.s. �2). WhileF∗ is ambiguous on the subgrammar started with�,
it cannot show the original grammar is ambiguous due to the violation of the single-line constraint
required by (→ L�M. In detail, there is no way to extend C1 and C2 into valid parse trees rooted at (:
the only possibilities are)1 and)2 in Fig. 3, but both are invalid. This makes a big di�erence with
CFGs: when given a production rule (→ �, any valid parse tree of � gives rise to a valid parse
tree of (. Although the bAMB condition holds, this grammar is indeed unambiguous: only � → �2

is applicable; every sentence produced by � → �1 contains at least two lines (due to the alignment
constraint in �1 → � ‖ �), which violates the single-line constraint.

We learn from this counterexample that the following property is crucial to making the ⇒-part
provable: any valid parse tree C shall be extended into a larger valid parse tree) having C as its
subtree. We formulate the above property as a relation over a pair of a nonterminal and a sentence,
which we call a signature:

De�nition 4.1. (Sub-derivation) Let (�,F) and (�, E) be two signatures. We say (�, E) is a sub-
derivation of (�,F), if for every parse tree C ⊲�⇒∗ E , there exists a parse tree) such that) ⊲�⇒∗F

and C is a subtree of) .

Assuming (�, E) is a sub-derivation of (�,F), the idea of proving the⇒-part is as follows: Given
C1 ≠ C2 ⊲ �⇒∗ F�, if some premise indicates that (�,F�) is a sub-derivation of ((,F() for some
F(, then we can conclude that (⇒∗ F(is ambiguous by extending C1 (resp. C2) into)1 (resp.)2),
where)1 ≠)2 ⊲ (⇒∗ F(. To execute this idea, we �rst propose reachability as the missing premise
that implies sub-derivation (§4.2), and then de�ne local ambiguity to be essentially “bAMB ∧

reachability”, so that “local ambiguity ⇔ derivation ambiguity” becomes provable (§4.3).

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 262. Publication date: October 2023.

262:10 Jiangyi Liu, Fengmin Zhu, and Fei He

4.2 Reachability: The Missing Piece

The de�nition of reachability should encode the necessary conditions that establish a sub-derivation
relation. To make (�, E) a sub-derivation of (�,F), we must prove �⇒∗ F , which can be split into
two main steps: � ⇒∗ B1�B2 ⇒∗ F1EF2 = F . Given that � ⇒∗ E , it su�ces to �nd the sentential
forms B1 ⇒∗ F1 and B2 ⇒∗ F2 such that �⇒∗ B1�B2. Recall that in CFGs, �⇒∗ B1�B2 means “� is
reachable from�”. This motivates us to extend the reachability relation on CFGs to layout-sensitive
grammars—taking sentences and the layout constraints they should ful�ll into account.

De�nition 4.2. (Reachability) The reachability relation (�,F) →∗ (�, E) is the re�exive transitive
closure of a one-step reachability relation →1 inductively de�ned as follows:

(1) If � → �i ∈ % and i (F), then (�,F) →1 (�,F).
(2) If � → � i �′ ∈ % , i (F1,F2) and �′ ⇒∗ F2, then (�,F1F2) →1 (�,F1).
(3) If � → �′ i � ∈ % , i (F1,F2) and �′ ⇒∗ F1, then (�,F1F2) →1 (�,F2).

The three rules for →1 enumerate all the possibilities we can derive a nonterminal � from � in
one derivation step, via the production rule � → �i , � → � i �′ and � → �′ i �, respectively.
This de�nition is strong enough to imply the sub-derivation relation, as stated in the following
lemma:

Lemma 4.3. If � ⇒∗ E , then (�,F) →∗ (�, E) i� (�, E) is a sub-derivation of (�,F).

Proof Sketch. For the ⇒-part: induction on the reachable relation (in this part, the hypothesis
� ⇒∗ E is useless). For the⇐-part: we have) ⊲�⇒∗ F for every C ⊲ � ⇒∗ E ; induction on) and
check in every case (�,F) →∗ (�, E). �

In the counterexample we explained in §4.1, ((,F∗) is not reachable to (�,F∗): although the
nonterminal symbol (is reachable to � via the production rule (→ L�M, the single-line constraint
single(F∗) violates. Thus, the lemma above does not apply. Furthermore, no sentence F ful�lls
((,F) →∗ (�,F

∗) due to the violation of the single-line constraint. On the other hand, let F ′
,

[2@(1, 1), 2@(1, 2)], we have ((,F ′) →∗ (�,F
′) because the single-line constraint single(F∗) now

ful�lls. By the lemma above, a parse tree that witnesses �⇒∗ F
′ can be extended to a full parse

tree that witnesses (⇒∗ F
′.

4.3 Local Ambiguity: Foundation of SMT Encoding

With the reachability relation de�ned, local ambiguity is essentially “bAMB ∧ reachability”. In
bAMB, “two parse trees di�er on a node at level 1” is formally expressed by “they are dissimilar”
(denoted by 6'), via a similarity relation ' inductively de�ned by the rules below:

empty(�) ' empty(�) leaf (�, C:) ' leaf (�, C:)

root (C1) = root (C2) word (C1) = word (C2)

unary(�, C1) ' unary(�, C2)

root (C11) = root (C21) word (C11) = word (C21) root (C12) = root (C22) word (C12) = word (C22)

binary(�, C11, C12) ' binary(�, C21, C22)

De�nition 4.4 (Local ambiguity). A signature (�,F) is said to be locally ambiguous if there exists
(�,ℎ) such that (�,F) →∗ (�,ℎ), and there exist C1 6' C2 that both witness � ⇒∗ ℎ.

Local ambiguity is convenient for SMT encoding: both the similarity and reachability relations
are inductively de�ned, and all their side premises are encodable in SMT theories. Our encoding
(which will be explained in §5) is essentially translating the local ambiguity de�nition into an SMT

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 262. Publication date: October 2023.

Automated Ambiguity Detection in Layout-Sensitive Grammars 262:11

formula. The following theorem—“local ambiguity⇔ derivation ambiguity”—provides guarantees
towards a sound and complete SMT encoding:

Theorem 4.5. (�,F) is locally ambiguous i� the derivation �⇒∗ F is ambiguous.

Proof Sketch. For the⇒-part: Let (�,ℎ) be a signature such that (�,F) →∗ (�,ℎ). Let C1 6' C2
be two parse trees that both witness � ⇒∗ ℎ. By Lemma 4.3, there exist C ⊲�⇒∗ F and C1 being
a subtree of C . By substituting C2 for C1 in C , we obtain a new parse tree C ′ ⊲ � ⇒∗ F . We have
C1 6' C2 ⇒ C1 ≠ C2 ⇒ C ≠ C ′. Therefore, C and C ′ witness the ambiguity of �⇒∗ F .

For the⇐-part: Let C1 ≠ C2 ⊲�⇒∗F . It su�ces to extract two subtrees, say C ′1 from C1 and C ′2 from
C2, such that: (1) they are both valid; (2) they are not similar; and (3) the signature they both have,
say (�,ℎ), is reachable from (�,F) (i.e., (�,F) →∗ (�,ℎ)). The subtrees C ′1 and C

′
2 can be found via

tree di�erence: compare node pairs between C1 and C2 in a depth-�rst order and return immediately
when the nodes are di�erent. By the property of such a tree di�erence algorithm, one can discharge
the above conditions (1) – (3). �

Using the above theorem, we can show that the grammar mentioned in §4.1 is unambiguous: one
cannot �nd any sentence F such that ((,F) is locally ambiguous because no sentence F ful�lls
((,F) →∗ (�,F

∗). On the other side, if we loosen (→ L�M to (→ � (i.e., erasing the single-line
constraint) in this grammar, it becomes ambiguous because ((,F∗) is now locally ambiguous:
the two dissimilar trees C1 and C2 of Fig. 3 both witness � ⇒∗ F

∗, and the reachability relation
((,F∗) →∗ (�,F

∗) now holds. The two possible parses ofF∗ are viewed as)1 and)2 in Fig. 3.

Comparison. Our concept of local ambiguity strengthens Axelsson et al. [2008]’s bAMB in two
dimensions. First, a reachability relation is de�ned for layout-sensitive grammars as a nontrivial
extension of the usual reachability notion on CFGs. This relation “locally” encodes the necessary
conditions for ensuring the equivalence theorem on each signature. Second, our equivalence
theorem (Theorem 4.5) holds for any layout-sensitive grammar and obviously also for any CFG,
which makes it more general than bAMB which only applies to reduced CFGs.

5 BOUNDED AMBIGUITY CHECKING

With the notion of local ambiguity introduced in the previous section, we are now ready to
construct an encoding Φ(:)—the existence of a :-length ambiguous sentence—via a translation
of local ambiguity into an SMT formula. We will present this translation in a top-down manner
(§5.1, §5.2) and show that it is sound and complete (§5.3). Relying on an SMT solver (e.g., Z3) as the
backend, our bounded ambiguity checker is facilitated by a bounded loop that �nds the smallest
: > 0 such that Φ(:) is satis�able, whose satisfying model gives a shortest ambiguous sentence of
the input grammar (§5.4).

5.1 Satisfying Model

Before presenting Φ(:), let us see which variables should be included in a satisfying model< of
this formula. First, we encode the ambiguous sentenceF< of the model<—a :-length positioned
token sequence—by three groups of variables T8 , L8 and C8 (for 0 ≤ 8 < :): they resp. encode the
terminal, the line number, and the column number of each positioned token in the sequence.
Second, we introduce auxiliary propositional variables to state whether a derivation or reacha-

bility judgment holds, as required by the de�nition of local ambiguity. The variables are split into
three groups (whereF<

G,X
denote the X-length subsentence ofF< starting at index G):

(1) D�
G,X

for � ∈ #, 0 < G + X < : states whether �⇒∗ F
<
G,X

;

(2) R�
Y for � ∈ # states whether ((,F<) →∗ (�, Y);

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 262. Publication date: October 2023.

262:12 Jiangyi Liu, Fengmin Zhu, and Fei He

(3) R�
G,X

for � ∈ #, 0 < G + X < : states whether ((,F<) →∗ (�,F
<
G,X

).

We use two groups of variables to encode the reachability judgments, R�
Y for the empty sentence

and R�
G,X

for nonempty subsentenceF<
G,X

. For the derivation judgments, however, we do not need

variables D�
Y to encode � ⇒∗ Y because nullability does not depend on a sentence—it can be

precomputed from the production rules and we write null(�) to mean � is nullable.

5.2 SMT Encoding

We now present the top-level encoding for Φ(:), where the auxiliary de�nitions Φ� (:), ΦY
'
(:),

Φ
6Y
'
(:) and Φmulti (�, G, X) will be introduced later:

Φ(:) , Φ� (:) ∧ Φ
Y
' (:) ∧ Φ

6Y
'
(:)

∧
∨
� ∈#

©«
(R�

Y ∧ Φmulti (�, 0, 0)) ∨
∨
0<X

G+X≤:

(R�
G,X ∧ Φmulti (�, G, X))

ª®®¬
.

The �rst three conjuncts Φ� (:), ΦY
'
(:) and Φ

6Y
'
(:) resp. provide logical restrictions on the three

groups of propositional variables D�
G,X

, R�
Y and R�

G,X
, so that when Φ(:) is satis�able, their truth

values will indicate the validity of the derivation/reachability judgments as mentioned in §5.1.
The last conjunct encodes local ambiguity by De�nition 4.4: there exists a nonterminal � ∈ #

and a subsentenceF<
G,X

such that:

(a) ((,F<) →∗ (�,F<
G,X

), expressed by R�
Y (ifF<

G,X
= Y) or R�

G,X
(ifF<

G,X
≠ Y); and

(b) there are two dissimilar parse trees that witness � ⇒∗ F
<
G,X

, expressed by Φmulti (�, G, X).

Well-foundedness. Realizing that derivation and reachability relations are recursively de�ned on
nonterminals, the nonterminal set # should be well-founded so that sound encodings for Φ� (:),
Φ
Y
'
(:), Φ6Y

'
(:) and Φmulti (�, G, X) can be constructed. To obtain a well-founded relation on # , we

require the grammar to be acyclic, which intuitively means any cyclic derivation such as �⇒+ � is
not allowed. This requirement does not weaken the practicality of our approach: a well-designed
grammar should never be cyclic; cycles are very likely to cause ambiguity.
Formally, an LS2NF (#, Σ, %, () is said acyclic if its graph representation is acyclic (in graph

theory), where the graph representation is a directed graph 〈#, �〉 such that

(�, �) ∈ � ⇔ (∃i : � → �i ∈ %) ∨ (∃i, �′ : � → � i �′ ∈ % ∧ null(�′))

∨ (∃i, �′ : � → �′ i � ∈ % ∧ null(�′)) .

It is well-known that deciding the acyclicity of a directed graph is solvable in linear time [Tarjan
1972].

In an acyclic LS2NF, the edge set � of its graph representation forms a well-founded relation,
called the predecessor relation, written � ≺ � for (�, �) ∈ �. The inverse (or transpose) relation �−1

is also well-founded, called the successor relation, written � � � for (�,�) ∈ � (or (�, �) ∈ �−1).

Encoding derivation. The key observation is that the judgment �⇒∗ F (F ≠ Y) can be rewritten
(being logically equivalent) in a “more verbose” disjunctive form, which is closer to an SMT formula:

(�⇒∗ F) ⇔
∨

�→0∈%

(|F | = 1 ∧F8 .term = 0) ∨
∨

�→�i ∈%

(� ⇒∗ F ∧ i (F))

∨
∨

�→�1i�2∈%
F=F1F2

(�1 ⇒∗ F1 ∧ �2 ⇒∗ F2 ∧ i (F1,F2)),
(1)

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 262. Publication date: October 2023.

Automated Ambiguity Detection in Layout-Sensitive Grammars 262:13

where the three disjuncts enumerate all possible ways to achieve �⇒∗ F using a production rule:

• � → 0 ifF has length 1 and 0 is the sole terminal ofF ;
• � → �i if � producesF andF satis�es i ;
• � → �1 i �2 if �1 produces a pre�x ofF , �2 produces the rest (su�x), and the two satisfy i .
There are (X + 1) ways of splittingF into two parts: the pre�x length ranges from 0 to X .

For every possible layout constraint i used in the grammar, we assume there is an SMT formula
that consistently encodes its semantics:

• for a unary constraint i , Φi (G, X) ⇔ i (F<
G,X

);
• for a binary constraint i , Φi (G, X

′, X) ⇔ i (F<
G,X ′

,F<
G+X ′,X−X ′

).

The encodings for the built-in layout constraints are direct translations of their de�nitions (Fig. 2).
The formula Φ� (:) provides restrictions that every D�

G,X
is true if and only if �⇒∗F

<
G,X

, and the
latter is a direct translation of Eq. (1):

Φ� (:) , ∀� ∈ #, X > 0, G + X ≤ : : D�
G,X ⇔∨

�→0∈%

(X = 1 ∧ TG = 0) ∨
∨

�→�i ∈%

(D�
G,X ∧ Φi (G, X)) ∨

∨
�→�1i�2∈%(

(null(�1) ∧ D
�2

G,X
) ∨ (null(�2) ∧ D

�1

G,X
) ∨

∨
0<X ′<X

(D
�1

G,X ′
∧ D

�2

G+X ′,X−X ′
∧ Φi (G, X

′, X))

)
.

The three disjuncts on the right-hand side of ⇔ respectively correspond to the three disjuncts
in Eq. (1). The last disjunct of Eq. (1) splits depending on if F1 or F2 is empty—this is necessary
because D�1

G,X ′
is only de�ned for nonempty subsentences (X ′ > 0).

Lemma 5.1. If< |= Φ� (:), then for every � ∈ # , X > 0, G + X ≤ : ,<(D�
G,X

) = true i� �⇒∗ F
<
G,X

.

Proof Sketch. By well-founded induction on X and ≺. �

Example 5.2. Throughout this section, we showcase the concrete SMT encoding on the LS2NF
for the EBNF � ′

block
de�ned in §2 (we introduce fresh auxiliary nonterminals r and s):

block → block ‖ stmt block → stmt
stmt → nop stmt → rB

r → s block s → do

We set : = 3. The formula Φ� (3) iterates over the nonterminals and all pairs of G and X such
that X > 0 ∧ G + X ≤ : . One of them is the following:

Dblock
0,3 ⇔⊥∨ (Dstmt

0,3 ∧ >)

∨ [(null(block) ∧ Dstmt
0,3) ∨ (null(stmt) ∧ Dblock

0,3) ∨ (Dblock
0,1 ∧ Dstmt

1,2 ∧ Φalign (0, 1, 3))

∨ (Dblock
0,2 ∧ Dstmt

2,1 ∧ Φalign (0, 2, 3))] .

Its right-hand side encodes all possible ways to achieve block ⇒∗ F
<
0,3:

• the �rst disjunct is false (⊥) because X = 3 ≠ 1;
• the second disjunct encodes the possibility of using “block → stmt”: stmt should produce
F<

0,3 (encoded as Dstmt
0,3); no layout constraint required, i.e., true (>).

• the last disjunct encodes the possibilities of using “block → block ‖ stmt”, further split into
four sub-disjuncts:
– X = 0: the pre�x is empty, meaning block is nullable (null(block)); the su�x producesF<

0,3

(Dstmt
0,3).

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 262. Publication date: October 2023.

262:14 Jiangyi Liu, Fengmin Zhu, and Fei He

– X = 3: the su�x is empty, which is the opposite to the above case.
– X = 1: block produces F<

0,1 (D
block
0,1) and stmt the rest F<

1,2 (D
stmt
1,2); the two satisfy the

alignment constraint (Φalign (0, 1, 3));
– X = 2: similar to the above case.

Encoding reachability. The idea of rewriting a derivation judgment as a disjunctive form applies
to the reachability judgment too:

((,F) →∗ (�,F�) ⇔ (� = (∧F� = F) ∨
∨

�→�i ∈%

(((,F) →∗ (�,F�) ∧ i (F�))

∨
∨

�→�i�′∈%

(((,F) →∗ (�,F�F
′) ∧ �′ ⇒∗ F

′ ∧ i (F�,F
′))

∨
∨

�→�′i�∈%

(((,F) →∗ (�,F
′F�) ∧ �′ ⇒∗ F

′ ∧ i (F ′,F�)).

(2)

It encodes→∗, the re�exive and transitive closure of→1, by explicitly stating re�exivity as the �rst
disjunct, and then integrating transitivity into→1, yielding the last three disjuncts that respectively
correspond to the three rules for →1 as de�ned in De�nition 4.2. Depending on whether F� is
empty or not, we obtain the encodings of ΦY

'
(:) and Φ

6Y
'
(:) via a translation of Eq. (2):

Φ
Y
' (:) , ∀� ∈ # : R�

Y ⇔

(� = (∧ : = 0) ∨
∨

�→�i ∈%

R�
Y ∨

∨
�→�i�′∈%

©«
(R�

Y ∧ null(�′)) ∨
∨
X>0

G+X≤:

(R�
G,X ∧ D�′

G,X)
ª®®¬

∨
∨

�→�′i�∈%

©«
(R�

Y ∧ null(�′)) ∨
∨
X>0

G+X≤:

(R�
G,X ∧ D�′

G,X)
ª®®¬
.

Φ
6Y
'
(:) , ∀� ∈ #, X > 0, G + X ≤ : : R�

G,X ⇔

(� = (∧ G = 0 ∧ X = :) ∨
∨

�→�i ∈%

(R�
G,X ∧ Φi (G, X))

∨
∨

�→�i�′∈%
G+X+X ′≤:

(R�
G,X+X ′ ∧ ite(X ′ = 0, null(�′),D�′

G+X,X ′) ∧ Φi (G, X, X + X ′))

∨
∨

�→�′i�∈%
X ′≤G

(R�
G−X ′,X ′+X ∧ ite(X ′ = 0, null(�′),D�′

G−X ′,X ′) ∧ Φi (G − X ′, X ′, X ′ + X)).

The layout predicates i (F�), i (F�,F
′) and i (F ′,F�) of Eq. (2) are not translated in Φ

Y
'
(:)

because they trivially hold (F� = Y). When translating �′ ⇒∗ F
′ of Eq. (2), we must be careful that

F ′ might be empty:

• in Φ
Y
'
(:),F ′ is always empty so the translation is null(�′);

• in Φ 6Y
'
(:), we use the “if-then-else” predicate ite(2,Φ1,Φ2), a shorthand for (2∧Φ1)∨ (¬2∧Φ2),

to cover both cases.

Lemma 5.3. If < |= Φ� (:) ∧ Φ
6Y
'
(:) ∧ Φ

Y
'
(:), then for every � ∈ # , if <(R�

Y) = true, then

((,F<) →∗ (�, Y).

Proof Sketch. By well-founded induction on � (note this is the reverse of ≺). Apply Lemma 5.1
where necessary. �

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 262. Publication date: October 2023.

Automated Ambiguity Detection in Layout-Sensitive Grammars 262:15

Lemma 5.4. If< |= Φ� (:) ∧ Φ
6Y
'
(:), then for every � ∈ # , X > 0, G + X ≤ : , if<(R�

G,X
) = true,

then ((,F<) →∗ (�,F
<
G,X

).

Proof Sketch. By well-founded induction on : − X and � (note this is the reverse of ≺). Apply
Lemma 5.1 where necessary. �

Example 5.5. The formula ΦY
'
(3) iterates over the nonterminals. One of them is the following:

Rblock
Y ⇔⊥∨ ⊥

∨ [(Rblock
Y ∧ null(stmt)) ∨ (Rblock

0,1 ∧ Dstmt
0,1) ∨ (Rblock

0,2 ∧ Dstmt
0,2) ∨ (Rblock

0,3 ∧ Dstmt
0,3)

∨ (Rblock
1,1 ∧ Dstmt

1,1) ∨ (Rblock
1,2 ∧ Dstmt

1,2) ∨ (Rblock
2,1 ∧ Dstmt

2,1)]

∨ . . .

Its right-hand side encodes the possible conditions for (block,F<) →∗ (block, Y):

• the �rst disjunct is false (⊥) because : = 3 ≠ 0;
• the second disjunct is false (⊥) because no unary production rule can produce block;
• the third disjunct encodes the possibilities using “block → block ‖ stmt”, which is further
divided into 7 sub-disjuncts: among them, the �rst one corresponds to the case when stmt is
nullable (null(stmt)); the rest requires (block,F<

G,X
) is reachable and stmt producesF<

G,X
for

each (G, X) such that 0 < G + X ≤ 3 (in total 6 possibilities);
• there is one more disjunct encodes the possibilities using “r → s block”, which is similar to
the above case (to avoid redundancy, this formula is elided).

Example 5.6. The formula Φ 6Y
'
(3) iterates over the nonterminals and all pairs of G and X such that

X > 0 ∧ G + X ≤ 3. One of them is the following:

Rblock
0,3 ⇔ >∨ (Rblock

0,3 ∧ null(stmt) ∧ >) ∨ (Rblock
0,3 ∧ null(s) ∧ >) .

Its right-hand side encodes the possible conditions for (block,F<) →∗ (block,F<
0,3):

• the �rst disjunct is true (>) because block is the start symbol, G = 0, and X = 3;
• the second disjunct encodes the possibility using “block → block ‖ stmt”: stmt is nullable,
(block,F<

0,3) is reachable, and the alignment constraint trivially holds (>) as stmt is nullable;
• the last disjunct encodes the possibility using “r → s block”, which is similar to the above
case.

Encoding the existence of dissimilar parse trees. Our goal is to express “there exist two dissimilar
parse trees that witness � ⇒∗ F

<
G,X

” in an SMT formula Φmulti (�, G, X). The key technical problem
is how to encode the existence of two such dissimilar parse trees. By de�nition, to tell if two given
parse trees are similar or not, it su�ces to only compare their children of the root nodes5. Since
every parse tree C is a visual representation of a derivation trace for root (C) ⇒∗ word (C) (or a proof
tree that evidences the validity of that derivation judgment), and that the root node with its children
on the parse tree correspond to the �rst step of the trace, “being dissimilar” is essentially “having at
least two derivation traces that di�er in the �rst step”.

Speci�cally, to make this distinction on two derivation traces for � ⇒∗ F
<
G,X

, we use (in the �rst
step) either two distinct production rules for � or one binary rule � → �1 i �2 in two distinct
ways. For the latter case, each way splitsF<

G,X
into two parts where the pre�x is derivable from �1,

the su�x is derivable from �2, and the length of the two pre�xes are di�erent. Suppose we can
compute the set of all possible choices for such �rst steps, the formula Φmulti (�, G, X) simply states
that “this set has at least two elements”.
5This coincides with the intuitive explanation of being dissimilar—they di�er on a node at level 1.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 262. Publication date: October 2023.

262:16 Jiangyi Liu, Fengmin Zhu, and Fei He

We start by de�ning the elements of this set—possible choices of the �rst step in deriving
�⇒∗F

<
G,X

. A compact syntactic representation could simply be a clause U , indicating the production
rule � → U is chosen. In case a binary rule � → �1 i �2 is chosen, we further need to specify how
F<
G,X

gets split—an additional parameter, the pre�x length, is enough. Thus, we introduce choice
clauses with a similar syntax of (layout) clauses:

W ::= Y | 0 | �i | �X
′

1 i �2.

The only di�erence with clauses is that in the last case, the binary choice clause includes an
additional parameter X ′ (0 ≤ X ′ ≤ X), which denotes the aforementioned pre�x length.
Semantically, a choice clause W represents under which condition we can use W as the �rst

derivation step to eventually achieve the derivation � ⇒∗ F
<
G,X

, denoted by JWKG,X :

JYKG,X , X = 0

J0KG,X , X = 1 ∧ TG = 0

J�iKG,X , ite(X = 0, null(�),D�
G,X ∧ Φi (G, X))

J�X
′

1 i �2KG,X , ite(X ′ = 0, null(�1),D
�1

G,X ′
) ∧ ite(X = X ′, null(�2),D

�2

G+X ′,X−X ′
) ∧ Φi (G, X

′, X)

Note that all the above conditions are encodable in SMT formulae.
The set of all possible choices of the �rst step in deriving � ⇒∗ F

<
G,X

is given by

{W | W ∈ Γ(�, X) ∧ JWKG,X },

where

Γ(�, X) , {n | � → Y ∈ %} ∪ {0 | � → 0 ∈ %} ∪ {�i | � → �i ∈ %}

∪ {�X
′

1 i �2 | � → �1 i �2 ∈ %, 0 ≤ X ′ ≤ X}

gives all choice clauses of� according to the production rules. With this, the formula Φmulti (�, G, X)

should be

|{W | W ∈ Γ(�, X) ∧ JWKG,X }| ≥ 2,

which is equivalent to the following form that uses Two(P), a standard approach to encode “at
least two of the propositions in the set P are true” in propositional logic:

Φmulti (�, G, X) , Two({JWKG,X }W ∈Γ (�,X)).

Lemma 5.7. If< |= Φ� (:) and G + X ≤ : , then< |= Φmulti (�, G, X) i� there exist two dissimilar

parse trees that witness � ⇒∗ F
<
G,X

.

Example 5.8. Traversing the production rules, we obtain the set of possible choices for deriving
stmt ⇒∗ F

<
0,2:

Γ(stmt, 2) = ∅ ∪ {nop} ∪ {rB} ∪ {s0 block, s1 block, s2 block}.

The formula Φmulti (stmt, 0, 2) is then Two({JWK0,2}W ∈Γ (stmt,2)) where the set of formulae are:

JnopK0,2 = ⊥ ∧ T0 = nop

JrBK0,2 = Dr
0,2 ∧ Φo�side (0, 2)

Js0 blockK0,2 = > ∧ null(s) ∧ Dblock
0,2

Js1 blockK0,2 = > ∧ Ds
0,1 ∧ Dblock

1,1

Js2 blockK0,2 = > ∧ Ds
0,2 ∧ null(block)

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 262. Publication date: October 2023.

Automated Ambiguity Detection in Layout-Sensitive Grammars 262:17

5.3 Formal Properties

For any acyclic LS2NF and any length : ≥ 0:

Theorem 5.9 (Soundness). If< |= Φ(:), then (⇒∗ F
< is ambiguous.

Proof Sketch. By Theorem 4.5 it su�ces to show local ambiguity, which is straightforward by
applying Lemmas 5.3, 5.4 and 5.7. �

Theorem 5.10 (Completeness). If there exists a sentence F such that |F | = : and (⇒∗ F is

ambiguous, then Φ(:) is satis�able.

Proof Sketch. By Theorem 4.5 we have ((,F) →∗ (�,ℎ). We pick a model< where

F<
= F

<(D�
G,X) ⇔ �⇒∗ F

<
G,X

<(R�
Y) ⇔ ((,F) →∗ (�, Y)

<(R�
G,X) ⇔ ((,F) →∗ (�,F

<
G,X)

By de�nition, Φ� (:), ΦY
'
(:) and Φ

6Y
'
(:) are satis�able. Given that ((,F) →∗ (�,ℎ), ℎ must be a

subsentence ofF , say ℎ = FGℎ,Xℎ for some Gℎ , Xℎ . By Lemma 5.7, Φmulti (�, Gℎ, Xℎ) is satis�able. �

Space Complexity. For every length : , $ (:2) SMT variables are created, and for each variable,
an enumeration loop similar to CYK [Younger 1967] creates $ (:) terms, where we also use $ (=)

space to go through the = production rules. Thus, the space complexity for Φ(:) is $ (= · :3).

5.4 The Bounded Loop

Our bounded ambiguity checker is facilitated by a bounded loop where the bound is con�gurable.
In the :-th iteration (initially : = 1), logical constraints for �nding an ambiguous sentence with
length : are encoded as an SMT formula Φ(:). We rely on a backend SMT solver (e.g., Z3) to check
its satis�ability: if it is satis�able under some model, say< |= Φ(:), then we recover an ambiguous
sentenceF< from< (recall the auxiliary variables T8 , L8 , and C8 encode this ambiguous sentence),
and the loop exits immediately; otherwise, we go to the next iteration until the bound is reached. In
this way, the shortest nonempty ambiguous sentence is obtained. Additionally, since our encoding
is complete, if our checker does not �nd any ambiguous sentence bounded by a certain length, then
we have proved that the input grammar is unambiguous within this bound.

6 COQ MECHANIZATION

All the de�nitions and theorems presented in §4 and §5 were mechanized in the Coq proof assistant.
Our proof consists of 10 Coq �les and ~2 k lines of code (excluding comments and blanks). On a
MacBook Pro with an Apple M1 chip and 16GB memory, a complete veri�cation took ~12 s.
There was only one axiom we made: in the type “grammar Σ # ” for LS2NFs, the terminal set

Σ is assumed to be nonempty, introduced by the type class constraint !Inhabited Σ. This makes
sense because a language with an empty alphabet is trivially empty and thus not interesting at all,
though, in theory, we could avoid this axiom (see our artifact for more details).

7 EVALUATION

We developed an ambiguity detector, called Lamb6, based on the bounded ambiguity checking
loop and SMT encodings described in §5. This tool was written in Python 3 and it used Z3 as the
backend SMT solver via the PySMT library.

6Meaning “Layout-sensitive ambiguity detector”.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 262. Publication date: October 2023.

262:18 Jiangyi Liu, Fengmin Zhu, and Fei He

block-node → tokens | block-sequence | block-map

o�-node → token | block-map

o�0-node → block-sequence

tokens → token∗

token → t

block-sequence → ‖sequence-item‖+

sequence-item → (- start)B

block-map → key-val

key-val → explicit-key-val | implicit-key-val

explicit-key-val → explicit-key ‖ explicit-val

explicit-key → o�-explicit-key | o�0-explicit-key

o�-explicit-key → (? o�-node)B

o�0-explicit-key → (? o�0-node)Q

explicit-val → o�-explicit-val | o�0-explicit-val

o�-explicit-val → (: o�-node)B

o�0-explicit-val → (: o�0-node)Q

implicit-key-val → o�-implicit-key-val | o�0-implicit-key-val

o�-implicit-key-val → implicit-key o�-node

o�0-implicit-key-val → implicit-key o�0-node

implicit-key → Ltokens :M

Fig. 4. The studied YAML grammar fragment (#3-0).

To examine the e�ectiveness of Lamb, we evaluated several grammars (and grammar fragments)
and their variants selected from the language syntax speci�cation of �ve popular programming
languages used in various application �elds, including the full grammar of Python and SASS.

7.1 Experimental Setup

Dataset. We studied the syntax speci�cation of �ve widely used programming languages: Python,
SASS, YAML, F# and Haskell.
Python is self-described as a powerful yet easy-to-learn language. It is popular in the statistics

and machine-learning community. Its indentation syntax has in�uenced the syntax design of many
later languages such as Scala 3. SASS is self-described as “Syntactically Awesome Style Sheets”
and has become the industrial standard in cascading style sheets (CSS) processors used in web
development. A survey [Coyier 2012] shows that among all developers who use a CSS preprocessor,
SASS took 41% of the market, being the second most popular option. As a preprocessor language,
SASS has a rich feature set competitive to general-purpose programming languages, such as nested
blocks, mixins, and control structures, which makes it Turing-complete. For these two languages,
we extracted their full grammars from their language manuals as our dataset: the Python grammar
(numbered #1-0) consists of 83 rules in EBNF and 1009 rules in (the desugared) LS2NF; the SASS
grammar (numbered #2-0) consists of 83 rules in EBNF and 564 rules in LS2NF.

YAML is a human-readable serialization format for both describing con�gurations and exchanging
data between systems/applications. In our dataset, we concentrate on YAML’s layout-sensitive

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 262. Publication date: October 2023.

Automated Ambiguity Detection in Layout-Sensitive Grammars 262:19

start → expr+

expr → l-expr | m-expr | e

bind → (let id = expr)B

m-expr → m-with rules

m-with → match id with

rules → ‖(| id -> expr)B‖+

Fig. 5. The studied F# grammar fragment (#4-0).

document → ‖stmt‖+

stmt → instance | valdef

valdef → (decl where?)
B

decl → Le = eM

instance → (instance Eq a where)B

e → id | id id

where → where ‖decl‖+

Fig. 6. The studied Haskell grammar fragment (#5-0).

fragment (numbered #3-0). This fragment covers a rich set of layout-sensitive features and is
conceptually complex due to its deeply nested lists and maps. This grammar is presented in Fig. 4;
it consists of 21 rules in EBNF and 37 rules in LS2NF.
F# and Haskell are two popular functional languages that employ a rich set of layout-sensitive

features including alignment, indentation and o�side. Our dataset contains two small fragments
of each: the F# fragment (numbered #4-0, Fig. 5) exhibits two typical features of ML languages—
let-binding and pattern matching; and the Haskell fragment (numbered #5-0, Fig. 6) exhibits two
“killer features” of Haskell—where-declaration and type classes.

Since the above �ve grammars were extracted frommature languages, it is very unlikely that they
have ambiguity issues; indeed, we didn’t detect any ambiguity among them. To better demonstrate
Lamb’s power of ambiguity detection, for each of the �ve original grammars (referred to seeds), we
created four variants (numbered from #x-1 to #x-4 for the seed grammar #x-0) by randomly removing
3 – 5 layout constraints from the seed grammar. In total, our dataset consists of 25 grammars: 5
seed grammars and 20 variants. All of these grammars can be found in our open-source artifact
linked at the end of this paper.

Method. In executing Lamb on each grammar, we set both (meaning the execution will be aborted
when either condition is reached) a timeout of 1 h and an upper bound (i.e., sentence length) of 15.
When an ambiguous sentence is found, we are interested in how users can bene�t from it. For this,
we manually inspect the ambiguous sentence along with all its parse trees, try to understand the
cause of ambiguity, and add layout constraints to resolve it.

Environment. All experiments were conducted on a machine with Intel(R) Core(TM) i7-12700K
CPU and 64 GB memory, running Ubuntu 22.04 and Python version 3.10.6.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 262. Publication date: October 2023.

262:20 Jiangyi Liu, Fengmin Zhu, and Fei He

Table 1. Overall evaluation results. In the last column, “–” means no ambiguous sentence was found.

Lang. Formula construction time Solving time # LS2NF rule Ambig. sentence length

#1-0 Python 1.5min timeout 1009 —

#1-1 Python 43.7 s 3452.5 s 1009 10

#1-2 Python 20.1 s 515.9 s 1009 7

#1-3 Python 15.1 s 236.8 s 1008 6

#1-4 Python 47.8 s 3135.3 s 1009 10

#2-0 SASS 68.8 s timeout 695 —

#2-1 SASS 10.7 s 111.7 s 700 6

#2-2 SASS 38.4 s 2321.7 s 695 11

#2-3 SASS 48.7 s 2381.7 s 695 11

#2-4 SASS 12.9 s 214.2 s 695 7

#3-0 YAML 18.4 s 712 s 48 —

#3-1 YAML 50ms 3ms 46 2

#3-2 YAML 743ms 294ms 46 6

#3-3 YAML 587ms 287ms 46 6

#3-4 YAML 86ms 14ms 49 2

#4-0 F# 11 s 116 s 22 —

#4-1 F# 328ms 97ms 20 7

#4-2 F# 677ms 151ms 21 7

#4-3 F# 651ms 171ms 22 7

#4-4 F# 702ms 197ms 21 7

#5-0 Haskell 17.6 s 180.7 s 33 —

#5-1 Haskell 2.82ms 2.54ms 32 11

#5-2 Haskell 642ms 332ms 33 7

#5-3 Haskell 1.64 s 1.85ms 32 10

#5-4 Haskell 1.65ms 2.14ms 32 10

7.2 Results

Table 1 presents the following metrics we collected:

• the SMT formulae construction times;
• the SMT formulae solving times;
• the numbers of LS2NF rules; and
• the lengths of ambiguous sentences (if found).

Above all, no ambiguous sentences were found in any of the seed grammars: Lamb timed out for
the two full grammars (#1-0 and #2-0) and reached the maximum bound 15 for the three grammar
fragments (#3-0, #4-0 and #5-0), indicating they are bounded unambiguous. Ambiguous sentences

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 262. Publication date: October 2023.

Automated Ambiguity Detection in Layout-Sensitive Grammars 262:21

␣ ␣ ?

-

␣ ␣ :

␣ -

␣ ␣ :

␣ ␣ ␣ t

Fig. 7. The ambiguous sentence found in grammar #3-2. Spaces are denoted as “␣”.

were found in every variant, with the ambiguous sentence lengths varying from 2 to 11. These
results reveal that Lamb can apply to grammars of di�erent sizes and can �nd ambiguous sentences
within a relatively small bound.

Regarding the solving time, a larger grammar (in particular, a full grammar) and a longer
ambiguous sentence lead to a greater amount of time cost. This is well-understood in SMT solving:
the solver usually slows down as the complexity of the formula increases. Given that optimizing
mature SMT solvers (like the Z3 solver we used) is extremely challenging these days, the only
thing we could do is to minimize the complexity of the constructed SMT formulae: as mentioned in
§5.3, the number of nodes in our SMT encoding is proportionate to $ (:=3)—where : is the bound
and = is the number of LS2NF rules—and this is indeed the time complexity of the fastest parsing
algorithm (namely CYK) we have ever known. To this end, we believe our encoding is e�cient for
bounded ambiguity detection.

7.3 Empirical Analysis of Ambiguity

For grammars where ambiguous sentences were found, we are interested in how users can bene�t
from them. We conducted an empirical analysis of the parse trees of the ambiguous sentences and
try to �gure out the cause of the ambiguity and a possible way to resolve it. Let us consider grammar
#3-2 as an example. This grammar is a variant of #3-0 (shown in Fig. 4); mutated production rules
are listed below (in total four layout constraints were removed):

o�-explicit-key → ? (o�-node)B

o�0-explicit-key → ? o�0-node

o�-explicit-val → : (o�-node)B

o�0-explicit-val → : o�0-node

Lamb found an ambiguous sentence of length 6 (shown in Fig. 7), and presented all of its two
parse trees as depicted in Fig. 8. Note that our tool presents users with de-binarized parse trees that
correspond to the input EBNF (rather than binary trees that correspond to the desugared LS2NF) for
better readability. In the �rst parse tree (Fig. 8a), the mapping key is a one-element list, containing
exactly a null. In the second parse tree (Fig. 8b), the mapping key is also a one-element list but its
element is no longer null. To resolve this ambiguity issue, we added the o�side-align constraint
(·Q) to the right-hand side of o�0-explicit-key, o�0-implicit-key-val and o�0-explicit-val. In this
way, the grammar becomes unambiguous.

The above process was repeated on every other ambiguous sentence that Lamb found. For all of
them, we found it not hard to �rst understand the cause of ambiguity by inspecting the parse trees,
and then �gure out a set of additional layout constraints for disambiguating the grammar.

In practice, one may easily miss some layout constraints that are indeed necessary for unambigu-
ity, particularly in large grammars. Hence, detecting potential ambiguity automatically is bene�cial.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 262. Publication date: October 2023.

262:22 Jiangyi Liu, Fengmin Zhu, and Fei He

explicit-key-val

explicit-key

o�0-explicit-key

? o�0-node

block-sequence

sequence-item

-

explicit-val

o�0-explicit-val

: o�0-node

block-sequence

sequence-item

- start

block-node

block-map

key-val

implicit-key-val

o�-implicit-key-val

implicit-key

:

o�-node

token

t

(a) parse tree C1 of #3-2

explicit-key-val

explicit-key

o�0-explicit-key

? o�0-node

block-sequence

sequence-item

- start

block-node

block-map

key-val

implicit-key-val

o�0-implicit-key-val

implicit-key

:

o�0-node

block-sequence

sequence-item

-

explicit-val

o�-explicit-val

: o�-node

token

t

(b) parse tree C2 of #3-2

Fig. 8. The parse trees of the ambiguous sentence found in grammar #3-2.

As shown in Table 1, despite the large size of the Python grammar and its variants, Lamb was
still able to �nd ambiguous sentences as short as six tokens. These shortest ambiguous sentences
are undoubtedly more productive than a random (and usually longer) ambiguous sentence for the
language designer to debug and �x design �aws.

8 RELATED WORK

Layout-sensitive languages & parsing. In 1966, Landin [1966] �rst introduced layout-sensitive
languages, which in�uenced the syntax design of many later programming languages. As an
extension to CFG, Indentation-sensitive CFG (ISCFG) [Adams 2013] can express layout rules and
derive LR(:) and GLR algorithms for parsing these layout-sensitive grammars. In ISCFG, symbols
are annotated with the numerical relation that the indentation of every nonterminal must have

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 262. Publication date: October 2023.

Automated Ambiguity Detection in Layout-Sensitive Grammars 262:23

with that of its children. Although ISCFG has a formal theory and is parser-friendly, it takes too
much e�ort for a human to manually specify those annotations.
In a declarative layout speci�cation [Erdweg et al. 2013], layout constraints are expressed with

primitives that support direct access to the position of a certain “border” of a code block. To
realize layout-sensitive parsing, a naive approach is to generate every possible parse tree with GLR
parsing �rst while neglecting layouts, and then �lter with layout constraints. This approach is,
however, ine�cient for practical applications. To improve performance, they identify a subset of
constraints that are independent of context-sensitive information and enforce them at parse time.
Later, another version with high-level speci�cation was proposed by Amorim et al. [2018]. Our
grammar declarative speci�cation notations are inspired by theirs. The di�erence lies in how we
regard layout constraints: in their speci�cation, constraints are attached to a normal layout-free
production rule, whereas in ours, constraints are part of the rule.

Apart from generalized parsing, Iguana [Afroozeh and Izmaylova 2015, 2016] is a novel parsing
framework based upon data-dependent grammars [Jim et al. 2010], which extends a CFG with arbi-
trary computation, variable binding and logical constraint. Iguana translates high-level declarations
into equations that are expressive in data-dependent grammars.
Brzozowski derivatives [Brzozowski 1964] have been rediscovered to simplify the description

of parsers. Brachthäuser et al. [2016] propose a new parser combinator library with �rst-class
derivatives, gaining �ne-grained control over an input stream. It is still an open question whether
their framework can implement alignment and o�side rules modularly, which, for example, are
seen in Haskell’s grammar.

Automata-based ambiguity detection. Basten [2016] proposes an approach of converting ambiguity
detection problems into the search for an accepting path in the multi-stack pushdown automata
constructed from the input grammar. However, this method cannot be directly extended to layout-
sensitive grammars, because they are not expressible using PDAs (which are equivalent to context-
free languages). Based on our knowledge, it is still an open question of how to build automata that
are equivalent to layout-sensitive languages.

Random enumeration. Madhavan et al. [2015] propose a practical approach to check the equiva-
lence of CFGs, based on random enumeration of parse trees and words. To generate words of a
�xed length, they �rst transform the input CFG into a restricted CFG that can only derive words of
the given length, and then apply the random enumeration to it. It is also possible to apply random
enumeration techniques to the detection of ambiguous sentences. This can be done by �ltering out
the ambiguous ones in a set of randomly generated valid sentences. Vasudevan and Tratt [2013]
utilized this approach by �rst generating valid parse trees that conform to the grammar, then
unparsing each into a sentence, and �nally, parsing each sentence again to see if it is ambiguous.

To apply this approach to layout-sensitive grammars, two issues have to be resolved: (1) how to
generate random sentences that not only meet the syntax but also the layout constraints speci�ed
in the input grammar, and (2) how to produce all parse trees of a randomly-generated sentence.
For (2), one could use an existing generalized LL parsing technique. But for (1), how to e�ciently
obtain line/column numbers that ful�ll the layout constraints is not obvious. Random enumeration
may not be a good idea for this step due to the low chances of hitting the right combination of
line/column numbers. Using constraint solving to generate line/column numbers might perform
better, but we have no idea how much overhead the solvers will incur since they may be invoked a
lot of times. Overall, it seems to be di�cult to extend this method to layout-sensitive grammars.

Grammar synthesis. Is it possible to generate a parser from examples? Mernik et al. [2003] raised
this question and attempted genetic programming methods to answer it. In the recent decade,

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 262. Publication date: October 2023.

262:24 Jiangyi Liu, Fengmin Zhu, and Fei He

the research community has had signi�cant interest in programming by examples [Gulwani 2011;
Polozov and Gulwani 2015] and novel approaches have been proposed.

Parsify [Leung et al. 2015] is a graphical, interactive system for synthesizing and testing parsers
from user-provided examples (a set of sentences). They rely on a GLL parser to identify ambiguous
grammars and a few disambiguation �lters [Klint and Visser 1994; Thorup 1996] to eliminate the
well-known associatively and priority issues in grammars of binary expressions. They disambiguate
in an interactive manner: possible parse trees are presented to the user, and only one of them
is accepted. It is an interesting problem to study whether such an interactive manner applies to
resolving the ambiguities in layout-sensitive grammars.

Glade [Bastani et al. 2017] is an oracle-based grammar inference system. The algorithm synthe-
sizes a CFG that encodes the language of valid program inputs, beginning with a small set of the
target language that the user provides as seed inputs. Although grammar synthesis is a promising
direction that can ease the design of grammars and parsers, we still have not seen any work on the
automated synthesis of layout-sensitive grammars and parsers.

Grammar-based fuzzing. To improve the test coverage on programs whose inputs are highly
structured, like compilers and interpreters, the concept of grammar-based fuzzing [Zeller et al. 2019]
has been studied to leverage user-de�ned grammars for generating syntactically valid inputs. Black-
box fuzzing has been integrated with manually speci�ed grammars to test C compilers [Lindig
2005; Yang et al. 2011], �nd bugs in PHP and JavaScript interpreters [Holler et al. 2012], and
generate plausible inputs with the help of a parser merely [Mathis et al. 2019]. On white-box
techniques, Godefroid et al. [2008] use a handwritten grammar in combination with a custom
grammar-based constraint solver to fuzz a JavaScript interpreter. CESE [Majumdar and Xu 2007]
combines exhaustive enumeration of valid inputs with symbolic execution. Interestingly, it is
possible to consider extra constraints too (like in data-dependency grammars): from Boolean
combinations of patterns [Gopinath et al. 2021] to �rst-order logic [Steinhöfel and Zeller 2022]. In
comparison, our goal is to �nd an ambiguous sentence not just a random one.

9 CONCLUSION AND FUTURE DIRECTIONS

Detecting ambiguity in layout-sensitive grammars is an important problem in language design.
Traditionally, language designers have to check ambiguity by hand, which is tedious and error-
prone. To ease this process, this paper presents the �rst approach (to the best of our knowledge)
that can automatically detect ambiguous sentences via SMT solving. The generated ambiguous
sentences are the shortest ones, which makes it more productive for language designers to debug
and �x design �aws. Our evaluation demonstrates the e�ectiveness of identifying ambiguous
sentences in real-world grammar variants and the ability to help users resolve such ambiguities.
In the future, we are interested in investigating whether it is possible to further automate the

process of adding layout constraints to disambiguate layout-sensitive grammars via user interaction,
based on the produced ambiguous sentences and parse trees. Moreover, it is interesting to see how
ambiguity detection could bene�t data-dependency grammar users.

DATA-AVAILABILITY STATEMENT

The software that supports §4 – §7 is available on Software Heritage [Zhu and Liu 2023a] and
Zenodo [Zhu and Liu 2023b].

ACKNOWLEDGMENTS

This work was supported in part by the National Natural Science Foundation of China (Grant
No. 62072267 and Grant No. 62021002).

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 262. Publication date: October 2023.

Automated Ambiguity Detection in Layout-Sensitive Grammars 262:25

REFERENCES

Michael D. Adams. 2013. Principled Parsing for Indentation-sensitive Languages: Revisiting Landin’s O�side Rule. In
Proceedings of the 40th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (Rome, Italy)
(POPL ’13). ACM, New York, NY, USA, 511–522. https://doi.org/10.1145/2429069.2429129

Ali Afroozeh and Anastasia Izmaylova. 2015. One Parser to Rule Them All. In 2015 ACM International Symposium on New

Ideas, New Paradigms, and Re�ections on Programming and Software (Onward!) (Pittsburgh, PA, USA) (Onward! 2015).
ACM, New York, NY, USA, 151–170. https://doi.org/10.1145/2814228.2814242

Ali Afroozeh and Anastasia Izmaylova. 2016. Iguana: A Practical Data-dependent Parsing Framework. In Proceedings of the

25th International Conference on Compiler Construction (Barcelona, Spain) (CC 2016). ACM, New York, NY, USA, 267–268.
https://doi.org/10.1145/2892208.2892234

Alfred V Aho, Ravi Sethi, and Je�rey D Ullman. 1986. Compilers: Principles, Techniques, and Tools. Addison wesley 7, 8
(1986), 9.

Luís Eduardo de Souza Amorim, Michael J. Steindorfer, Sebastian Erdweg, and Eelco Visser. 2018. Declarative Speci�cation
of Indentation Rules: A Tooling Perspective on Parsing and Pretty-printing Layout-sensitive Languages. In Proceedings of

the 11th ACM SIGPLAN International Conference on Software Language Engineering (Boston, MA, USA) (SLE 2018). ACM,
New York, NY, USA, 3–15. https://doi.org/10.1145/3276604.3276607

Roland Axelsson, Keijo Heljanko, and Martin Lange. 2008. Analyzing Context-Free Grammars Using an Incremental
SAT Solver. In Automata, Languages and Programming, Luca Aceto, Ivan Damgård, Leslie Ann Goldberg, Magnús M.
Halldórsson, Anna Ingólfsdóttir, and Igor Walukiewicz (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 410–422.

Osbert Bastani, Rahul Sharma, Alex Aiken, and Percy Liang. 2017. Synthesizing Program Input Grammars. In Proceedings of

the 38th ACM SIGPLAN Conference on Programming Language Design and Implementation (Barcelona, Spain) (PLDI 2017).
ACM, New York, NY, USA, 95–110. https://doi.org/10.1145/3062341.3062349

Hendrikus J. S. Basten. 2016. Context-Free Ambiguity Detection Using Multi-stack Pushdown Automata. In Developments in

Language Theory - 20th International Conference, DLT 2016, Montréal, Canada, July 25-28, 2016, Proceedings (Lecture Notes in

Computer Science, Vol. 9840), Srecko Brlek and Christophe Reutenauer (Eds.). Springer, 1–12. https://doi.org/10.1007/978-
3-662-53132-7_1

Jonathan Immanuel Brachthäuser, Tillmann Rendel, and Klaus Ostermann. 2016. Parsing with First-class Derivatives. In
Proceedings of the 2016 ACM SIGPLAN International Conference on Object-Oriented Programming, Systems, Languages, and

Applications (Amsterdam, Netherlands) (OOPSLA 2016). ACM, New York, NY, USA, 588–606. https://doi.org/10.1145/
2983990.2984026

Janusz A. Brzozowski. 1964. Derivatives of Regular Expressions. J. ACM 11, 4 (Oct. 1964), 481–494. https://doi.org/10.1145/
321239.321249

N Chomsky and MP Schützenberger. 1963. The Algebraic Theory of Context-Free Languages. In Studies in Logic and the

Foundations of Mathematics. Vol. 35. Elsevier, 118–161.
Chris Coyier. 2012. https://css-tricks.com/poll-results-popularity-of-css-preprocessors/
Sebastian Erdweg, Tillmann Rendel, Christian Kästner, and Klaus Ostermann. 2013. Layout-Sensitive Generalized Parsing.

In Software Language Engineering, Krzysztof Czarnecki and Görel Hedin (Eds.). Springer Berlin Heidelberg, Berlin,
Heidelberg, 244–263.

Clark C Evans et al. 2014. Yaml: Yaml ain’t markup language.
Patrice Godefroid, Adam Kiezun, and Michael Y. Levin. 2008. Grammar-based Whitebox Fuzzing. In Proceedings of the 29th

ACM SIGPLAN Conference on Programming Language Design and Implementation (Tucson, AZ, USA) (PLDI ’08). ACM,
New York, NY, USA, 206–215. https://doi.org/10.1145/1375581.1375607

Rahul Gopinath, Hamed Nemati, and Andreas Zeller. 2021. Input Algebras. In Proceedings of the 43rd International Conference

on Software Engineering (Madrid, Spain) (ICSE ’21). IEEE Press, 699–710. https://doi.org/10.1109/ICSE43902.2021.00070
John Gruber. 2012. Markdown: Syntax. URL http://daring�reball.net/projects/markdown/syntax. Retrieved on June 24 (2012),

640.
Sumit Gulwani. 2011. Automating String Processing in Spreadsheets Using Input-output Examples. In Proceedings of the

38th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (Austin, Texas, USA) (POPL ’11).
ACM, 317–330. https://doi.org/10.1145/1926385.1926423

Christian Holler, Kim Herzig, and Andreas Zeller. 2012. Fuzzing with Code Fragments. In Proceedings of the 21st USENIX

Conference on Security Symposium (Bellevue, WA) (Security’12). USENIX Association, Berkeley, CA, USA, 38–38. http:
//dl.acm.org/citation.cfm?id=2362793.2362831

John E Hopcroft, Rajeev Motwani, and Je�rey D Ullman. 2001. Introduction to automata theory, languages, and computation.
Acm Sigact News 32, 1 (2001), 60–65.

Trevor Jim, Yitzhak Mandelbaum, and David Walker. 2010. Semantics and Algorithms for Data-dependent Grammars. In
Proceedings of the 37th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (Madrid,
Spain) (POPL ’10). ACM, New York, NY, USA, 417–430. https://doi.org/10.1145/1706299.1706347

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 262. Publication date: October 2023.

https://doi.org/10.1145/2429069.2429129
https://doi.org/10.1145/2814228.2814242
https://doi.org/10.1145/2892208.2892234
https://doi.org/10.1145/3276604.3276607
https://doi.org/10.1145/3062341.3062349
https://doi.org/10.1007/978-3-662-53132-7_1
https://doi.org/10.1007/978-3-662-53132-7_1
https://doi.org/10.1145/2983990.2984026
https://doi.org/10.1145/2983990.2984026
https://doi.org/10.1145/321239.321249
https://doi.org/10.1145/321239.321249
https://css-tricks.com/poll-results-popularity-of-css-preprocessors/
https://doi.org/10.1145/1375581.1375607
https://doi.org/10.1109/ICSE43902.2021.00070
https://doi.org/10.1145/1926385.1926423
http://dl.acm.org/citation.cfm?id=2362793.2362831
http://dl.acm.org/citation.cfm?id=2362793.2362831
https://doi.org/10.1145/1706299.1706347

262:26 Jiangyi Liu, Fengmin Zhu, and Fei He

Paul Klint and Eelco Visser. 1994. Using �lters for the disambiguation of context-free grammars. In Proc. ASMICS Workshop

on Parsing Theory. Citeseer, 1–20.
Donald E Knuth. 1965. On the translation of languages from left to right. Information and control 8, 6 (1965), 607–639.
P. J. Landin. 1966. The Next 700 Programming Languages. Commun. ACM 9, 3 (March 1966), 157–166. https://doi.org/10.

1145/365230.365257
Martin Lange and Hans Leiß. 2009. To CNF or not to CNF? An e�cient yet presentable version of the CYK algorithm.

Informatica Didactica 8, 2009 (2009), 1–21.
Alan Leung, John Sarracino, and Sorin Lerner. 2015. Interactive Parser Synthesis by Example. In Proceedings of the 36th

ACM SIGPLAN Conference on Programming Language Design and Implementation (Portland, OR, USA) (PLDI ’15). ACM,
New York, NY, USA, 565–574. https://doi.org/10.1145/2737924.2738002

Christian Lindig. 2005. Random Testing of C Calling Conventions. In Proceedings of the Sixth International Symposium on

Automated Analysis-driven Debugging (Monterey, California, USA) (AADEBUG’05). ACM, New York, NY, USA, 3–12.
https://doi.org/10.1145/1085130.1085132

Ravichandhran Madhavan, Mikaël Mayer, Sumit Gulwani, and Viktor Kuncak. 2015. Automating Grammar Comparison. In
Proceedings of the 2015 ACM SIGPLAN International Conference on Object-Oriented Programming, Systems, Languages, and

Applications (Pittsburgh, PA, USA) (OOPSLA 2015). Association for Computing Machinery, New York, NY, USA, 183–200.
https://doi.org/10.1145/2814270.2814304

Rupak Majumdar and Ru-Gang Xu. 2007. Directed Test Generation Using Symbolic Grammars. In Proceedings of the

Twenty-second IEEE/ACM International Conference on Automated Software Engineering (Atlanta, Georgia, USA) (ASE ’07).
ACM, New York, NY, USA, 134–143. https://doi.org/10.1145/1321631.1321653

Simon Marlow et al. 2010. Haskell 2010 language report. Available online http://www.haskell.org/(May 2011) (2010).
Björn Mathis, Rahul Gopinath, Michaël Mera, Alexander Kampmann, Matthias Höschele, and Andreas Zeller. 2019. Parser-

directed Fuzzing. In Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and Implementa-

tion (Phoenix, AZ, USA) (PLDI 2019). ACM, New York, NY, USA, 548–560. https://doi.org/10.1145/3314221.3314651
Marjan Mernik, Goran Gerlič, Viljem Žumer, and Barrett R. Bryant. 2003. Can a Parser Be Generated from Examples?. In

Proceedings of the 2003 ACM Symposium on Applied Computing (Melbourne, Florida) (SAC ’03). ACM, New York, NY,
USA, 1063–1067. https://doi.org/10.1145/952532.952740

Oleksandr Polozov and Sumit Gulwani. 2015. FlashMeta: A framework for inductive program synthesis. ACM SIGPLAN

Notices 50, 10 (2015), 107–126.
Dominic Steinhöfel and Andreas Zeller. 2022. Input Invariants. In Proceedings of the 30th ACM Joint European Software

Engineering Conference and Symposium on the Foundations of Software Engineering (Singapore, Singapore) (ESEC/FSE
2022). Association for Computing Machinery, New York, NY, USA, 583–594. https://doi.org/10.1145/3540250.3549139

Don Syme, Luke Hoban, Tao Liu, Dmitry Lomov, James Margetson, Brian McNamara, Joe Pamer, Penny Orwick, Daniel
Quirk, Chris Smith, et al. 2010. The F# 2.0 language speci�cation. Microsoft, August (2010).

Robert Tarjan. 1972. Depth-�rst search and linear graph algorithms. SIAM journal on computing 1, 2 (1972), 146–160.
Mikkel Thorup. 1996. Disambiguating grammars by exclusion of sub-parse trees. Acta Informatica 33, 6 (1996), 511–522.
Guido Van Rossum and Fred L Drake. 2011. The python language reference manual. Network Theory Ltd.
Naveneetha Vasudevan and Laurence Tratt. 2013. Detecting Ambiguity in Programming Language Grammars. In Software

Language Engineering - 6th International Conference, SLE 2013, Indianapolis, IN, USA, October 26-28, 2013. Proceedings

(Lecture Notes in Computer Science, Vol. 8225), Martin Erwig, Richard F. Paige, and Eric Van Wyk (Eds.). Springer, 157–176.
https://doi.org/10.1007/978-3-319-02654-1_9

Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. 2011. Finding and Understanding Bugs in C Compilers. In Proceedings

of the 32Nd ACM SIGPLAN Conference on Programming Language Design and Implementation (San Jose, California, USA)
(PLDI ’11). ACM, New York, NY, USA, 283–294. https://doi.org/10.1145/1993498.1993532

Daniel H Younger. 1967. Recognition and parsing of context-free languages in time n3. Information and control 10, 2 (1967),
189–208.

Andreas Zeller, Rahul Gopinath, Marcel Böhme, Gordon Fraser, and Christian Holler. 2019. The fuzzing book.
Fengmin Zhu and Jiangyi Liu. 2023a. Artifact of paper "Automated Ambiguity Detection in Layout-Sensitive Gram-

mars". https://archive.softwareheritage.org/swh:1:rev:6a08a4b9a6321aeb44d5bde19c1a62dd4e5fd2a2;origin=https://
github.com/lay-it-out/OOPSLA23-Artifact;visit=swh:1:snp:2135b15883c8028549ce5a460c745b782bdc2544

Fengmin Zhu and Jiangyi Liu. 2023b. Artifact of paper "Automated Ambiguity Detection in Layout-Sensitive Grammars".
https://doi.org/10.5281/zenodo.8329981

Received 2023-04-14; accepted 2023-08-27

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 262. Publication date: October 2023.

https://doi.org/10.1145/365230.365257
https://doi.org/10.1145/365230.365257
https://doi.org/10.1145/2737924.2738002
https://doi.org/10.1145/1085130.1085132
https://doi.org/10.1145/2814270.2814304
https://doi.org/10.1145/1321631.1321653
https://doi.org/10.1145/3314221.3314651
https://doi.org/10.1145/952532.952740
https://doi.org/10.1145/3540250.3549139
https://doi.org/10.1007/978-3-319-02654-1_9
https://doi.org/10.1145/1993498.1993532
https://archive.softwareheritage.org/swh:1:rev:6a08a4b9a6321aeb44d5bde19c1a62dd4e5fd2a2;origin=https://github.com/lay-it-out/OOPSLA23-Artifact;visit=swh:1:snp:2135b15883c8028549ce5a460c745b782bdc2544
https://archive.softwareheritage.org/swh:1:rev:6a08a4b9a6321aeb44d5bde19c1a62dd4e5fd2a2;origin=https://github.com/lay-it-out/OOPSLA23-Artifact;visit=swh:1:snp:2135b15883c8028549ce5a460c745b782bdc2544
https://doi.org/10.5281/zenodo.8329981

	Abstract
	1 Introduction
	2 A Motivating Example
	3 Preliminaries
	4 Local Ambiguity
	4.1 Motivation: A Failing Attempt
	4.2 Reachability: The Missing Piece
	4.3 Local Ambiguity: Foundation of SMT Encoding

	5 Bounded Ambiguity Checking
	5.1 Satisfying Model
	5.2 SMT Encoding
	5.3 Formal Properties
	5.4 The Bounded Loop

	6 Coq Mechanization
	7 Evaluation
	7.1 Experimental Setup
	7.2 Results
	7.3 Empirical Analysis of Ambiguity

	8 Related Work
	9 Conclusion and Future Directions
	Acknowledgments
	References

