
1

Lay-it-out: Interactive Design of Layout-Sensitive Grammars

(Preliminary Draft)

FENGMIN ZHU
∗†
,MPI-SWS, Germany and Tsinghua University, China

JIANGYI LIU
∗
, Tsinghua University, China

FEI HE, Tsinghua University, China

Layout-sensitive grammars have been adopted in many modern programming languages. However, tool
support for this kind of grammars still remains limited and immature. In this paper, we present Lay-it-out,
an interactive framework for layout-sensitive grammar design. Beginning with a user-defined context-free
grammar, our framework refines it by synthesizing layout constraints through user interaction. For ease of
interaction, a shortest nonempty ambiguous sentence (if exists) is automatically generated by our bounded
ambiguity checker via SMT solving. The soundness and completeness of our SMT encoding are mechanized in
the Coq proof assistant. A comprehensive evaluation, including 2 case studies on real-world grammar and
a user study on potential users of our tool, demonstrates the effectiveness, scalability, and usability of our
approach.

Additional Key Words and Phrases: layout-sensitive grammar, ambiguity, SMT, synthesis, Coq

1 INTRODUCTION

Layout-sensitive (or indentation-sensitive) grammars were first proposed by Landin [1966]. Nowa-
days, they have been adopted in many programming languages, e.g., Python [Van Rossum and
Drake 2011], Haskell [Marlow et al. 2010], F# [Syme et al. 2010], Yaml [Evans et al. 2014] and
Markdown [Gruber 2012]. These grammars are also introduced as new features in latest versions of
languages, e.g., optional braces in Scala 31. Due to the presence of layout constraints, indentations
and whitespaces affect how a program should be parsed. Although this amazing feature gives rise
to a stylized, structural, and elegant syntax, it increases the complexity of theoretical study (e.g.,
ambiguity problems) and tool development.
In the recent decade, pioneering studies have been made on layout-sensitive parsing [Adams

2013; Amorim et al. 2018; Erdweg et al. 2013]. To apply these parsing techniques, one must, first of
all, have the grammar formally specified. In a serious language design phase, this grammar should
be unambiguous. Due to the complexity introduced by layout constraints, manually checking the
ambiguity (especially for large grammars) is tedious and error-prone. Therefore, tool support for
automated ambiguity checking is essential to reduce human labor and avoid human mistakes.
For context-free grammars (CFGs), a common practical approach of ensuring unambiguity is

to check if it belongs to an unambiguous fragment of CFG, such as 𝐿𝐿(𝑘) [Aho et al. 1986] and
𝐿𝑅(𝑘) [Knuth 1965]. Off-the-shelf tools such as Lex/Yacc [Levine et al. 1992], Flex/Bison [Levine
2009], and SDF [Visser et al. 1997] have been built to automatically check whether a user-input
CFG is 𝐿𝐿(𝑘) or 𝐿𝑅(𝑘) (and generate the parser as well). For layout-sensitive grammar, however,
this approach is not yet practical: as far as we know, there is no similar theory or tool support.

In grammar design, proving unambiguity is an ultimate goal, but it is hard: checking the ambiguity
of a CFG is already undecidable [Chomsky and Schützenberger 1963; Hopcroft et al. 2001], so it is

∗Both authors contributed equally to this work.
†Early revisions of this work were done when the author was in Tsinghua University.
1https://docs.scala-lang.org/scala3/reference/other-new-features/indentation.html

Authors’ addresses: Fengmin Zhu, MPI-SWS, Saarbrücken, Saarland, 66123, Germany, paulzhu@mpi-sws.org, Tsinghua
University, Beijing, 100084, China; Jiangyi Liu, Tsinghua University, Beijing, 100084, China, liujiang19@mails.tsinghua.edu.
cn; Fei He, Tsinghua University, Beijing, 100084, China, hefei@tsinghua.edu.cn.

2022-08-02 15:12. Page 1 of 1–26.

https://docs.scala-lang.org/scala3/reference/other-new-features/indentation.html

1:2 Fengmin Zhu, Jiangyi Liu, and Fei He

even harder for layout-sensitive grammar (more expressive than CFG). Alternatively, we aim to
tackle the bounded ambiguity problem, which is more restrictive and thus decidable, but yet still
practical: is there any ambiguous sentence (i.e., has at least two different parse trees) within a given
length of a grammar? A sound and complete checker for this problem can automatically detect
ambiguity during the entire process of grammar design, which helps to exposes human mistakes as
early as possible.
This paper presents a novel interactive framework, Lay-it-out, for layout-sensitive grammar

design. This framework saves time and efforts of grammar designers in two aspects: (1) a bounded
ambiguity checker automatically generates a shortest nonempty ambiguous sentence (if any) so that
the grammar designer can detect the cause of ambiguity by a simplest and concrete example; (2) a
layout constraints synthesizer recommends candidate layout constraints to refine the input-grammar
via user interaction based on the ambiguous sentence, so that the user needs not manually specify
any layout rules. This feature also helps an ordinary developer who does not master layout rules to
design layout-sensitive grammars for their own domain-specific languages.

In a nutshell, the workflow of Lay-it-out is a grammar refinement loop guided by the detection
of ambiguous sentences, as depicted in Fig. 1. In the initial round, the user specifies a layout-
free grammar (i.e., a CFG) as input. Then, the bounded ambiguity checker produces a shortest
nonempty ambiguous sentence (if any) and presents it with all its parse trees to the user. Due to
inadequate layout constraints in the input grammar, these parse trees shall be distinguishable once
more layout constraints are added. The missing layout constraints are synthesized from the user’s
feedback that reflects their intents: the user is asked to format (e.g., insert indentations and newlines
between tokens) the ambiguous sentence in distinct ways to match each parse tree. The synthesizer
recommends a set of candidate layout constraints: the user can review and select the ones that meet
their intents. The user-selected layout constraints will be added to the input grammar. Multiple
interaction rounds may be taken until the user is satisfied with the refined grammar.
SMT (Satisfiability Modulo Theories) solving is a powerful technique to verification [Beyer

et al. 2018; Bjørner and de Moura 2014; Johnson 2009; Leino 2010] and synthesis [Jha et al. 2010;
Phothilimthana et al. 2016; Reynolds et al. 2015]. We find it also suitable for building a bounded
ambiguity checker. The layout constraints contain relational operations (e.g., <, >, =) on line/column
numbers of tokens—they can be easily expressed in integer difference logic that most SMT solvers
support.
To apply SMT solving, one must encode the problem as an SMT formula. Instead of directly

using the standard notion of ambiguity, we propose an alternative definition called local ambiguity,
which leads to a more straightforward and efficient encoding. The skeleton of our local ambiguity
is inspired by CFGAnalyzer [Axelsson et al. 2008], a tool that studies meta properties of CFGs,
including bounded ambiguity, via SAT solving. Our key innovation lies in a reachability relation
defined for layout-sensitive grammars, taking the influence of layout constraints on ambiguity
into careful account. In this way, we can show the logical equivalence between local ambiguity and
standard ambiguity.

With the equivalence theorem, we are able to construct a sound and complete SMT encoding for
solving the bounded ambiguity problem on acyclic layout-sensitive grammars. Being acyclic is not
a strong assumption: well-designed grammars should all have this nice property. The definitions
and theorems related to local ambiguity and encoding are mechanized in the Coq proof assistant.
In fact, Coq helped us a lot in finding pitfalls in early revisions of the encoding.
Our layout constraint synthesizer performs analysis on the position information conveyed in

user-provided reformatted words and computes a set of candidate layout constraints that refine
the input grammar. We allow the user to accept a subset of the candidate based on their intents.
Note that our synthesizer is targeting the disambiguation caused by inadequate layout constraints,

2022-08-02 15:12. Page 2 of 1–26.

Lay-it-out: Interactive Design of Layout-Sensitive Grammars 1:3

input: initial grammar

bounded
ambiguity checker

output: refined grammar

detect
ambiguity?

yes

no layout constraint
synthesizer

ambiguous word & parse tree reformatted words

select

candidates

done

next round

Fig. 1. High-level framework of Lay-it-out.

which is typical and unique for layout-sensitive grammars. Other kinds of ambiguity, such as the
well-known binary operator precedence (were studied in CFGs [Klint and Visser 1994; Leung et al.
2015; Thorup 1996]), are not focused on in this work.
To measure the performance of our approach, we conducted a comprehensive evaluation. Two

case studies on real languages—YAML’s layout-sensitive subset and the full SASS grammar—
demonstrate that Lay-it-out is effective in grammar disambiguation and scales to full grammar. In
particular, we successfully added 74 layout constraints for the SASS grammar within 16 rounds of
interaction, among which the longest ambiguous sentence had a length of 12. Besides, a user study
conducted on eight recruited participants reveals usability of Lay-it-out. In particular, the user
survey shows that all participants prefer our semi-automated approach to the traditional manual
approach for layout-sensitive grammar design.

To sum up, this paper makes the following contributions:

• Lay-it-out, the first (to the best of our knowledge) interactive framework for layout-
sensitive grammar design (§ 2, § 6, § 8);
• local ambiguity, an equivalent ambiguity definition that is SMT-friendly (§ 4);
• bounded ambiguity checker, developed from a sound and complete SMT encoding for acyclic
grammars (§ 5, § 7);
• a comprehensive evaluation that consists of two case studies and one user study, reveals
the effectiveness, scalability, and usability of Lay-it-out (§ 9).

2 LAY-IT-OUT BY EXAMPLE

In this section, we illustrate the workflow of Lay-it-out with a toy grammar 𝐺block:

block→ stmt+

stmt→ nop | do block

Imagine you are designing an imperative language where a block is defined as a sequence of
statements, each of which can be an empty statement (nop) or a do-block that recursively takes
a block as its body. You intend to employ a Haskell-like syntax in this language, and since you
have no idea what layout constraints should be added, you specify the above CFG at first, which is
apparently ambiguous. Lay-it-out can help you disambiguate this CFG interactively.

2022-08-02 15:12. Page 3 of 1–26.

1:4 Fengmin Zhu, Jiangyi Liu, and Fei He

(b) parse tree & reformatted sentence(a) ambiguous sentence

(c) grammar refinement

reformat

layout constraint synthesis

suggested

Fig. 2. Apply Lay-it-out to disambiguate 𝐺
block

.

Step 1: Input grammar and check bounded ambiguity. Lay-it-out takes 𝐺block as input,
preprocesses it, and invokes the bounded ambiguity checker. It produces a shortest ambiguous
sentence do nop nop, as shown in Fig. 2 (a).

Step 2: View parse trees and reformat sentences. To help with disambiguation, our tool
provides you with the parse trees of the given ambiguous sentence. As indicated by Fig. 2 (b), the
ambiguous sentence has two possible parses; each is associated with a tab page—“Parse #1” and
“Parse #2”. By switching between them and clicking “Show parse trees”, you can view the two parse
trees as depicted at the top of Fig. 2 (b). You realize that both are reasonable parses of do nop
nop, and the ambiguity is caused by the uncertainty of which block the last nop statement belongs
to: it belongs to the top-level block on #1 (left) and the do-block on #2 (right). A possible way to
eliminate this uncertainty is to enforce the statements of one block to align with each other, just
like in Haskell. To tell Lay-it-out this intent, you re-layout the tokens by dragging them (located
in blue boxes) around in the UI, formatting the ambiguous sentences in two distinct ways that each
matches its parse tree, as displayed on the bottom of Fig. 2 (b).

Step 3: Select from suggested layout constraints. Once the reformatted sentences are sub-
mitted, Lay-it-out suggests layout constraints from which you choose and add to the grammar.
For this example, some layout constraints (marked with yellow stars) are synthesized for clauses
“block”, “stmt” and “do block”. To eliminate the ambiguity, the statements inside one block should
be aligned; you thus select the suggested aligned Kleene plus constraint (from the dropdown list
displayed on the right in Fig. 2 (c)) and add it to the “stmt+” clause (this clause is selected in the
grammar displayed on the left in Fig. 2 (c)). Moreover, since a statement may be multiline, like the

2022-08-02 15:12. Page 4 of 1–26.

Lay-it-out: Interactive Design of Layout-Sensitive Grammars 1:5

align(𝑤1,𝑤2) ≜ (𝑤1 ≠ 𝜀 ∧𝑤2 ≠ 𝜀) =⇒ 𝑤1 [0] .col = 𝑤2 [0] .col
indent(𝑤1,𝑤2) ≜ (𝑤1 ≠ 𝜀 ∧𝑤2 ≠ 𝜀) =⇒ (𝑤2 [0] .col > 𝑤1 [0] .col ∧𝑤2 [0] .line = 𝑤1 [−1] .line + 1)

offside(𝑤) ≜ 𝑤 ≠ 𝜀 =⇒ (∀𝑡 ∈ 𝑤, 𝑡 .line > 𝑤 [0] .line =⇒ 𝑡 .col > 𝑤 [0] .col)
single(𝑤) ≜ 𝑤 ≠ 𝜀 =⇒ ∀𝑡 ∈ 𝑤, 𝑡 .line = 𝑤 [0] .line

Fig. 3. Logical predicates of built-in layout constraints.

offside rules in Haskell, you need also to add the offside constraint for the subclause “do block”2.
So far, you obtain a refined layout-sensitive grammar that is unambiguous:

block→ ∥stmt∥+

stmt→ nop | (do block)▷

where “∥ · ∥+” and “(·)▷” denote the aligned Kleene plus and offside constraints, respectively. For
this toy example, only one round of interaction is adequate. But in general, multiple rounds of
interaction may be needed to disambiguate the grammar eventually.

3 PRELIMINARY

Before diving into details on the technical components of our Lay-it-out framework, this section
provides necessary preliminary definitions and notations.

In formal language theory, a grammar𝐺 is a quadruple (𝑁, Σ, 𝑃, 𝑆), where𝑁 is a finite (nonempty)
set of nonterminals, Σ is a finite set of terminals (or tokens), 𝑃 ⊆ 𝑁 × (𝑁 ∪ Σ)∗ is a finite set of
production rules, and 𝑆 ∈ 𝑁 is the start symbol.
In a CFG, a sentence (sometimes also called a word) is a token sequence. In a layout-sensitive

grammar, a sentence is a sequence of positioned tokens3. Each positioned token has the form
𝑎@(𝑙𝑖𝑛𝑒, 𝑐𝑜𝑙), where 𝑎 ∈ Σ gives the terminal, and (𝑙𝑖𝑛𝑒, 𝑐𝑜𝑙) gives the position (i.e. line and column
number) in the source file. We denote an empty sentence by 𝜀. For a nonempty sentence 𝑤 , we
denote its length by |𝑤 |. We write 𝑤 [𝑖] to access the positioned token at index 𝑖 , and 𝑤 [𝑖] .term,
𝑤 [𝑖] .line and𝑤 [𝑖] .col resp. the terminal, line number and column number.

Layout constraints. An unary (resp. binary) layout constraint 𝜑 is a logical predicate over one
(resp. two) sentence(s), specifying positional restrictions on tokens of the sentences. As a convention,
no constraint can be given to empty sentences: 𝜑 (𝜀) = true (resp. 𝜑 (𝜀, ·) = 𝜑 (·, 𝜀) = true for binary
case).
We support the following built-in layout constraints: alignment (binary), indentation (binary),

offside (unary), offside-align (a variant of offside, unary), and single-line (unary). The first three are
widely used in many practical grammars and have been well-studied in previous work [Amorim
et al. 2018]. Offside-align and single-line rules are what we find useful in case studies (§ 9). Their
logical predicates are presented in Fig. 3, where𝑤 [−1] denotes the last positioned token of𝑤 .
Alignment restricts that the first token of the two sentences should be aligned at the column.

Indentation restricts the second part has its first token to the right (at column) of the first part,
and a newline exists in between. The offside rule was first proposed by Landin [1966] and later
revised by Adams [2013]. It restricts that in the parsed sentence, any subsequent lines must start

2It is fine if you forget this constraint in the first round. In that case, in the next round, Lay-it-out will generate an
ambiguous sentence witnessing this ambiguity which can be eliminated via this layout constraint.
3We assume all sentences are well-formed: positions of tokens must be in ascending order. Ill-formed sentences do not
physically exist in reality, e.g. [𝑎@(1, 2), 𝑏@(1, 1)] (𝑏 comes before 𝑎) and [𝑎@(1, 1), 𝑏@(1, 1)] (𝑎 and 𝑏 overlap).

2022-08-02 15:12. Page 5 of 1–26.

1:6 Fengmin Zhu, Jiangyi Liu, and Fei He

from a column that is further to the right of the start token of the first line. We also consider the
offside-align rule, a variant of the above, where subsequent lines can start from the same column
as that of the first line. The single-line rule restricts the parsed sentence to be one-line.

Binary normal form. It is well-known [Lange and Leiß 2009] that every CFG can be converted
to an equivalent binary normal form (or Chomsky normal form). We migrate the binary normal
form to layout-sensitive grammars as follows.

Definition 3.1 (LS2NF). A layout-sensitive grammar is in binary normal form, called LS2NF, if for
every production rule, its right-hand side (called a clause) is one of the following:
• an empty clause 𝜀;
• an atomic clause 𝑎, where 𝑎 ∈ Σ;
• an unary clause 𝐴𝜑 , where 𝐴 ∈ 𝑁 and 𝜑 is a unary layout constraint;
• a binary clause 𝐴 𝜑 𝐵, where 𝐴, 𝐵 ∈ 𝑁 and 𝜑 is a binary layout constraint.

Our definition is the same with CFG, but with layout constraints in unary/binary clauses. To
avoid inconsistent layout constraints, the production rule set cannot contain the following rules
simultaneously: (1) 𝐴→ 𝐵𝜑 and 𝐴→ 𝐵𝜑

′ where 𝜑 ≠ 𝜑 ′; (2) 𝐴→ 𝐵1 𝜑 𝐵2 and 𝐴→ 𝐵1 𝜑
′ 𝐵2 where

𝜑 ≠ 𝜑 ′.
Throughout the paper, we study layout-sensitive grammars in LS2NF, and use Extended Backus-

Naur form (EBNF) to express complex grammars for readability: they are converted to equivalent
LS2NF in the standard way [Lange and Leiß 2009]. We also use notations in place of rule names
for built-in layout constraints: we write 𝛼 ∥ 𝛽 for 𝛼 align 𝛽 , 𝛼 � 𝛽 for 𝛼 indent 𝛽 , 𝛼▷ for 𝛼offside, 𝛼Q

for 𝛼offside−align and L𝛼M for 𝛼single. The alignment constraint is extended to lists in EBNF: ∥𝛼 ∥+ and
∥𝛼 ∥∗ denote all sentences parsed by 𝛼 are aligned.

Parse trees. Parse trees are rooted trees (let 𝐴 ∈ 𝑁 be the root) inductively defined as follows:

𝑡 ::= empty(𝐴) | leaf (𝐴, 𝑎@(𝑖, 𝑗)) | unary(𝐴, 𝑡) | binary(𝐴, 𝑡1, 𝑡2)

They resp. correspond to the derivation using the empty, atom, unary and binary clause. We write
root(𝑡) and word(𝑡) to denote the root node and the represented sentence of a parse tree 𝑡 . A parse
tree is said valid if it follows the production rules and fulfills the layout-constraints:
• empty(𝐴) is valid if 𝐴→ 𝜀 ∈ 𝑃 ;
• leaf (𝐴, 𝑎@(𝑖, 𝑗)) is valid if 𝐴→ 𝑎 ∈ 𝑃 ;
• unary(𝐴, 𝑡) is valid if 𝐴→ root(𝑡)𝜑 ∈ 𝑃 , 𝜑 (word(𝑡)) is true and 𝑡 is valid;
• binary(𝐴, 𝑡1, 𝑡2) is valid if 𝐴 → root(𝑡1) 𝜑 root(𝑡2) ∈ 𝑃 , 𝜑 (word(𝑡1),word(𝑡2)) is true and
both 𝑡1, 𝑡2 are valid.

We say a parse tree 𝑡 witnesses a derivation from a nonterminal 𝐴 to a sentence 𝑤 , written
𝑡 ⊲ 𝐴⇒∗ 𝑤 , if 𝑡 is valid, root(𝑡) = 𝐴 and word(𝑡) = 𝑤 . Using the above notions, the usual notion
of derivation 𝐴⇒∗ 𝑤 is actually a short-hand for “∃𝑡, 𝑡 ⊲𝐴⇒∗ 𝑤”. Specially, we use the predicate
null(𝐴) to indicate that 𝐴⇒∗ 𝜀, a.k.a. 𝐴 is nullable.

Derivation ambiguity. We say the derivation 𝐴⇒∗ 𝑤 is ambiguous if there exist at least two
different parse trees that witness 𝐴⇒∗ 𝑤 . In this way, the bounded ambiguity problem is restated
as: for a given bound 𝑘 , is there a𝑤 s.t. |𝑤 | ≤ 𝑘 and 𝑆⇒∗ 𝑤 is ambiguous?
Throughout the paper, we reserve 𝐴, 𝐵,𝐶 for nonterminals, 𝑎, 𝑏, 𝑐 for tokens/terminals, 𝑤 for

sentences, 𝑡,𝑇 for parse trees, and 𝜑 for both unary and binary layout constraints (inferred from
context).

2022-08-02 15:12. Page 6 of 1–26.

Lay-it-out: Interactive Design of Layout-Sensitive Grammars 1:7

𝐺𝑆 :
𝑆 → 𝐴 ∥ 𝐵 𝐴→ 𝐶 | 𝐶 ′

𝐶 → 𝑎 𝐶 ′→ 𝑎

𝐵 → 𝑏

𝐴

𝐶

𝑎@(1, 3)

𝑡1 (valid)

𝐴

𝐶 ′

𝑎@(1, 3)

𝑡2 (valid)

𝑆

𝑡𝑖 𝐵

𝑏@(2, 4)

𝑇𝑖 (invalid)

Fig. 4. A counterexample where bAMB does not apply to 𝐺𝑆 (where 𝑆 is the start symbol).

4 LOCAL AMBIGUITY

Lay-it-out is guided by ambiguous sentences generated via constraint solving. The key technical
problem is to find an SMT formula Φ(𝑘) such that it is satisfiable iff there exists an ambiguous
sentence of length 𝑘 , and that every satisfying model corresponds to such an ambiguous sentence.
The most direct approach is to encode derivation ambiguity—“there exists two different parse trees
that both witness the derivation”—but how to encode the existential of those trees is challenging.
Generally speaking, the node pair that shows the difference can appear at an arbitrary level (or
depth). Apparently, enumerating every possibility is sophisticated and inefficient.
An indirect but more efficient approach could be, use an alternative definition that is logically

equivalent to derivation ambiguity, while being conveniently encodable in SMT theories. In this
section, we will propose a definition called local ambiguity. This definition will eventually allow
us to construct a sound and complete SMT encoding (§ 5) for the bounded ambiguity checking
problem.

4.1 Motivation: Lessons from a Failure Attempt

Our first attempt is to apply bAMB4, an existing condition for checking the bounded ambiguity of
reduced5 CFGs via SAT solving [Axelsson et al. 2008], in the setting of layout-sensitive grammars.
The bAMB condition is stated as: “there exists a nonterminal 𝐴 and a sentence𝑤 such that𝑤 has
at least two different (valid) parse trees rooted at 𝐴 and differ in a node on level 1”. Since parse
trees are visual representations of derivations, such two trees correspond to two distinct ways
of deriving 𝑤 : using either two distinct production rules for 𝐴, or one rule in two distinct ways.
In terms of logical constraints, bAMB is weaker than derivation ambiguity: (1) 𝐴 is existentially
quantified and may not be the start symbol; (2) the two parse trees differ in a node just below
(i.e., a child of) their root 𝐴, which is determined and shallow. In this way, bAMB is conveniently
encodable in SMT theories.

In order to use bAMB as an alternative definition, we must also show that “bAMB⇔ derivation
ambiguity”. The⇐-part is trivial as we have seen that bAMB is weaker. The⇒-part, however, does
not always hold, as demonstrated by Fig. 4: According to the production rules of 𝐺𝑆 , both 𝑡1 and 𝑡2
witness 𝐴⇒∗ [𝑎@(1, 3)]. They differ in a node on level 1 (𝐶 ≠ 𝐶 ′), which matches the definition of
bAMB. Since 𝐴 is not the start symbol, 𝑡1 and 𝑡2 alone cannot witness the ambiguity of 𝐺𝑆 . To do
so, we have to expand 𝑡1 and 𝑡2 each to a valid parse tree rooted at 𝑆 , say𝑇1 and𝑇2 (𝑇1 ≠ 𝑇2 because
𝑡1 ≠ 𝑡2). Unfortunately, this is impossible: the only possible trees having 𝑡𝑖 (𝑖 = 1, 2) as a subtree
are 𝑇𝑖 (𝑖 = 1, 2) according to the production rules, but they are both invalid because the alignment
constraint 𝐴 ∥ 𝐵 is not fulfilled, i.e., 𝑎@(1, 3) and 𝑏@(2, 4) are at distinct columns (3 ≠ 4).

4In their paper, “bAMB” stands for “bounded ambiguity”. We stick to the abbreviation “bAMB” here because the term
“bounded ambiguity” has a different meaning in this paper.
5A CFG is said reduced if all nonterminal symbols are reachable from the start symbol.

2022-08-02 15:12. Page 7 of 1–26.

1:8 Fengmin Zhu, Jiangyi Liu, and Fei He

We learn from the above example that the presence of layout constraints can affect parse tree
validity in a non-obvious way. In Fig. 4, the invalidity of 𝑇𝑖 (𝑖 = 1, 2) is caused by the nonfulfillment
of the alignment constraint, which further prevents us from expanding 𝑡1 and 𝑡2 into two distinct
valid parse trees rooted at the start symbol. This never happens to CFGs: we can always compose
two valid parse trees 𝑡𝑙 and 𝑡𝑟 into a parse tree binary(𝐴, 𝑡𝑙 , 𝑡𝑟) that is valid as well, as long as
𝐴→ root(𝑡𝑙) root(𝑡𝑟) ∈ 𝑃 .

Based on this observation, we find the following property is crucial to make the⇒-part provable:
any valid parse tree 𝑡 shall be expanded into a larger valid parse tree 𝑇 having 𝑡 as its subtree.
Formally, we define a relation over signatures, each is a pair of nonterminal and sentence:

Definition 4.1. (Sub-derivation) Let (𝐴,𝑤) and (𝐵, 𝑣) be two signatures. We say (𝐵, 𝑣) is a sub-
derivation of (𝐴,𝑤), if for every parse tree 𝑡 ⊲𝐵⇒∗ 𝑣 , there exists a parse tree𝑇 such that𝑇 ⊲𝐴⇒∗𝑤
and 𝑡 is a subtree of 𝑇 .

With this notion, the idea of proving the⇒-part is as follows: Given 𝑡1 ≠ 𝑡2 ⊲𝐴⇒∗ 𝑤𝐴, if some
premise indicates that (𝐴,𝑤𝐴) is a sub-derivation of (𝑆,𝑤𝑆) for some 𝑤𝑆 , then we can conclude
that 𝑆⇒∗𝑤𝑆 is ambiguous by expanding 𝑡1 (resp. 𝑡2) into𝑇1 (resp.𝑇2), where𝑇1 ≠ 𝑇2 ⊲ 𝑆⇒∗𝑤𝑆 . To
execute this idea, we first propose reachability as the missing premise that implies sub-derivation
(§ 4.2), and then define local ambiguity to be essentially “bAMB ∧ reachability”, so that “local
ambiguity⇔ derivation ambiguity” becomes provable (§ 4.3).

4.2 Reachability: The Missing Piece

The definition of reachability should encode necessary conditions that establish a sub-derivation
relation. To make (𝐵, 𝑣) a sub-derivation of (𝐴,𝑤), by definition we must prove 𝐴⇒∗ 𝑤 , which
can be split into two big steps: 𝐴⇒∗ 𝑠1𝐵𝑠2⇒∗ 𝑤1𝑣𝑤2 = 𝑤 . Given that 𝐵⇒∗ 𝑣 , it suffices to find
sentential forms 𝑠1 ⇒∗ 𝑤1 and 𝑠2 ⇒∗ 𝑤2 such that 𝐴⇒∗ 𝑠1𝐵𝑠2. Recall that in CFGs, 𝐴⇒∗ 𝑠1𝐵𝑠2
means “𝐵 is reachable from 𝐴”. This motivates us to extend the reachability relation on CFGs to
layout-sensitive grammars—taking sentences and the layout constraints they should fulfill into
account.

Definition 4.2. (Reachability) The reachability relation (𝐴,𝑤) →∗ (𝐵, 𝑣) is the reflexive transitive
closure of a one-step reachability relation→1 inductively defined as follows:
(1) If 𝐴→ 𝐵𝜑 ∈ 𝑃 and 𝜑 (𝑤), then (𝐴,𝑤) →1 (𝐵,𝑤).
(2) If 𝐴→ 𝐵 𝜑 𝐵′ ∈ 𝑃 , 𝜑 (𝑤1,𝑤2) and 𝐵′⇒∗ 𝑤2, then (𝐴,𝑤1𝑤2) →1 (𝐵,𝑤1).
(3) If 𝐴→ 𝐵′ 𝜑 𝐵 ∈ 𝑃 , 𝜑 (𝑤1,𝑤2) and 𝐵′⇒∗ 𝑤1, then (𝐴,𝑤1𝑤2) →1 (𝐵,𝑤2).

The three rules for→1 enumerate all possibilities we can derive a nonterminal 𝐵 from 𝐴 in one
derivation step, via the production rule 𝐴 → 𝐵𝜑 , 𝐴 → 𝐵 𝜑 𝐵′ and 𝐴 → 𝐵′ 𝜑 𝐵 respectively. This
definition is expressive enough to indicate a sub-derivation relation, as stated in the following
lemma (All lemmas/theorems in this and the next section are mechanized in Coq; we only provide
proof sketches in the paper):

Lemma 4.3. If 𝐵⇒∗ 𝑣 , then (𝐴,𝑤) →∗ (𝐵, 𝑣) iff (𝐵, 𝑣) is a sub-derivation of (𝐴,𝑤).
Proof Sketch. For the⇒-part: induction on the reachable relation (in this part, the hypothesis

𝐵⇒∗ 𝑣 is useless). For the⇐-part: we have 𝑇 ⊲𝐴⇒∗ 𝑤 for every 𝑡 ⊲ 𝐵⇒∗ 𝑣 ; induction on 𝑇 and
check in every case (𝐴,𝑤) →∗ (𝐵, 𝑣). □

4.3 Local Ambiguity: Foundation of SMT Encoding

With the reachability relation defined, local ambiguity is essentially “bAMB ∧ reachability”. In
bAMB, “two parse trees differ on a node at level 1” is formally expressed by “they are dissimilar”

2022-08-02 15:12. Page 8 of 1–26.

Lay-it-out: Interactive Design of Layout-Sensitive Grammars 1:9

(denoted by ̸≃), via a similarity relation ≃ inductively defined by the rules below:

empty(𝐴) ≃ empty(𝐴) leaf (𝐴, 𝑡𝑘) ≃ leaf (𝐴, 𝑡𝑘)

root(𝑡1) = root(𝑡2) word(𝑡1) = word(𝑡2)
unary(𝐴, 𝑡1) ≃ unary(𝐴, 𝑡2)

root(𝑡11) = root(𝑡21) word(𝑡11) = word(𝑡21) root(𝑡12) = root(𝑡22) word(𝑡12) = word(𝑡22)
binary(𝐴, 𝑡11, 𝑡12) ≃ binary(𝐴, 𝑡21, 𝑡22)

Definition 4.4 (Local ambiguity). A signature (𝐴,𝑤) is said local ambiguous if there exists (𝐻,ℎ)
such that (𝐴,𝑤) →∗ (𝐻,ℎ), and there exist 𝑡1 ̸≃ 𝑡2 that both witness 𝐻 ⇒∗ ℎ.

Local ambiguity is conveniently encodable in SMT theories: both the similarity and reachability
relations are inductively defined, and all their side premises are encodable in SMT theories. Our
encoding (which will be explained in § 5) is essentially translating the local ambiguity definition
into an SMT formula. The following theorem—“local ambiguity⇔ derivation ambiguity”—provides
guarantees towards a sound and complete SMT encoding:

Theorem 4.5. (𝐴,𝑤) is local ambiguous iff the derivation 𝐴⇒∗ 𝑤 is ambiguous.

Proof Sketch. For the⇒-part: Let (𝐻,ℎ) be a signature such that (𝐴,𝑤) →∗ (𝐻,ℎ). Let 𝑡1 ̸≃ 𝑡2
be two parse trees that both witness 𝐻 ⇒∗ ℎ. By Lemma 4.3, there exist 𝑡 ⊲𝐴⇒∗ 𝑤 and 𝑡1 being
a subtree of 𝑡 . By substituting 𝑡2 for 𝑡1 in 𝑡 , we obtain a new parse tree 𝑡 ′ ⊲ 𝐴⇒∗ 𝑤 . We have
𝑡1 ̸≃ 𝑡2 ⇒ 𝑡1 ≠ 𝑡2 ⇒ 𝑡 ≠ 𝑡 ′. Therefore, 𝑡 and 𝑡 ′ witness the ambiguity of 𝐴⇒∗ 𝑤 .

For the⇐-part: Let 𝑡1 ≠ 𝑡2 ⊲ 𝐴⇒∗ 𝑤 . It suffices to extract two subtrees, say 𝑡 ′1 from 𝑡1 and 𝑡 ′2
from 𝑡2, such that they have the same signature, say (𝐻,ℎ), and that 𝑡 ′1 ̸≃ 𝑡 ′2. The subtrees can be
found via tree difference: compare node pairs between 𝑡1 and 𝑡2 in a depth-first order and return
immediately when the nodes are different. □

By this theorem, we argue that 𝐺𝑆 shown in Fig. 4 is ambiguous, because (𝑆,𝑤𝑎𝑏) where𝑤𝑎𝑏 =

[𝑎@(1, 3), 𝑏@(2, 3)] is local ambiguous: (1) (𝑆,𝑤𝑎𝑏) →∗ (𝐴, [𝑎@(1, 3)]) (note that the alignment
constraint 𝐴 ∥ 𝐵 is now fulfilled), (2) 𝑡1 ̸≃ 𝑡2 since 𝐶 ≠ 𝐶 ′, and (3) both 𝑡1 and 𝑡2 witness 𝐴⇒∗
[𝑎@(1, 3)].

Comparison. Our local ambiguity strengthens bAMB in two dimensions. First, a reachability
relation is defined for layout-sensitive grammars as a nontrivial extension of the usual reacha-
bility notion on CFGs. This relation “locally” encodes the necessary conditions for ensuring the
equivalence theorem on each signature. Second, our equivalence theorem (Theorem 4.5) is held for
any layout-sensitive grammar and obviously also for any CFG, which makes it more general than
bAMB that applies to reduced CFGs merely.

5 BOUNDED AMBIGUITY CHECKING

With the local ambiguity defined in the previous section, we are now ready to construct encoding
for Φ(𝑘)—the existential of a 𝑘-length ambiguous sentence—by translating local ambiguity into an
SMT formula. We will present the technical details of this translation in a top-down manner (§ 5.1,
§ 5.2) and show that it is sound and complete (§ 5.3). Relying on an SMT solver (e.g., Z3) as the
backend, our bounded ambiguity checker is facilitated by a bounded loop that finds the smallest
𝑘 > 0 such that Φ(𝑘) is satisfiable, whose satisfying model gives a shortest ambiguous sentence of
the input grammar (§ 5.4).

2022-08-02 15:12. Page 9 of 1–26.

1:10 Fengmin Zhu, Jiangyi Liu, and Fei He

5.1 Satisfying Model

Before presenting Φ(𝑘), let us see which variables should be included in a satisfying model 𝑚
of this formula. Above all, we encode the ambiguous sentence𝑤𝑚 that𝑚 represents—a 𝑘-length
positioned token sequence—by three groups of variables T𝑖 , L𝑖 and C𝑖 (for 0 ≤ 𝑖 < 𝑘): they resp.
encode the terminal, the line number, and the column number of each positioned token in the
sequence.

Besides, we introduce auxiliary propositional variables to state whether a derivation or reacha-
bility judgment holds, as required by the definition of local ambiguity. The variables are split into
three groups (where𝑤𝑚

𝑥,𝛿
denote the 𝛿-length subword of𝑤𝑚 starting at index 𝑥):

(1) D𝐴
𝑥,𝛿

for 𝐴 ∈ 𝑁, 0 < 𝛿 < 𝑘 − 𝑥 states whether 𝐴⇒∗ 𝑤𝑚
𝑥,𝛿

;
(2) R𝐴

𝜀 for 𝐴 ∈ 𝑁 states whether (𝑆,𝑤𝑚) →∗ (𝐴, 𝜀);
(3) R𝐴

𝑥,𝛿
for 𝐴 ∈ 𝑁, 0 < 𝛿 < 𝑘 − 𝑥 states whether (𝑆,𝑤𝑚) →∗ (𝐴,𝑤𝑚

𝑥,𝛿
).

We use two groups of variables to encode the reachability judgments,R𝐴
𝜀 for the empty subword and

R𝐴
𝑥,𝛿

for nonempty subword𝑤𝑚
𝑥,𝛿

. For the derivation judgments, however, we do not need variables
D𝐴

𝜀 to encode 𝐴⇒∗ 𝜀 because nullability does not depend on a sentence—it can be precomputed
from the grammar. Thus, we can use the precomputed results in our encoding: we write null(𝐴) if
𝐴 is nullable.

5.2 SMT Encoding

We now present the top-level encoding for Φ(𝑘), where the auxiliary definitions Φ𝐷 (𝑘), Φ𝜀
𝑅
(𝑘),

Φ�̸�

𝑅
(𝑘) and Φmulti (𝐻, 𝑥, 𝛿) will be introduced later:

Φ(𝑘) := Φ𝐷 (𝑘) ∧ Φ𝜀
𝑅 (𝑘) ∧ Φ

�̸�

𝑅
(𝑘) ∧

∨
𝐻 ∈𝑁

(
(R𝐻

𝜀 ∧ Φmulti (𝐻, 0, 0)) ∨
∨

0<𝛿≤𝑘−𝑥
(R𝐻

𝑥,𝛿
∧ Φmulti (𝐻, 𝑥, 𝛿))

)
.

The first three conjuncts Φ𝐷 (𝑘), Φ𝜀
𝑅
(𝑘) and Φ�̸�

𝑅
(𝑘) resp. provide logical restrictions on the three

groups of propositional variables D𝐴
𝑥,𝛿

, R𝐴
𝜀 and R𝐴

𝑥,𝛿
, so that when Φ(𝑘) is satisfiable, their truth

values will indicate the validity of the derivation/reachability judgments as mentioned in § 5.1.
The last conjunct encodes local ambiguity by Definition 4.4: there exists a nonterminal 𝐻 and

a subword 𝑤𝑚
𝑥,𝛿

such that (1) (𝑆,𝑤𝑚) →∗ (𝐻,𝑤𝑚
𝑥,𝛿
), expressed by R𝐻

𝜀 (when 𝑤𝑚
𝑥,𝛿

= 𝜀) or R𝐻
𝑥,𝛿

(when𝑤𝑚
𝑥,𝛿

≠ 𝜀), and (2) there are two dissimilar parse trees that witness 𝐻 ⇒∗ 𝑤𝑚
𝑥,𝛿

, expressed by
Φmulti (𝐻, 𝑥, 𝛿).

Well-foundedness. Realizing that derivation and reachability relations are recursively defined
on nonterminals, the nonterminal set 𝑁 should be well-founded so that sound encodings for Φ𝐷 (𝑘),
Φ𝜀
𝑅
(𝑘), Φ̸𝜀

𝑅
(𝑘) and Φmulti (𝐻, 𝑥, 𝛿) can be constructed. To obtain a well-founded relation on 𝑁 , we

require the grammar to be acyclic, which intuitively means any cyclic derivation such as 𝐴⇒+ 𝐴 is
not allowed. This requirement does not weaken the practicality of our approach: a well-designed
grammar should never be cyclic.
Formally, the graph representation of an LS2NF (𝑁, Σ, 𝑃, 𝑆) is a directed graph ⟨𝑁, 𝐸⟩ where
(𝐴, 𝐵) ∈ 𝐸 if

(𝐴→ 𝐵𝜑 ∈ 𝑃) ∨ (𝐴→ 𝐵 𝜑 𝐵′ ∈ 𝑃 ∧ null(𝐵′)) ∨ (𝐴→ 𝐵′ 𝜑 𝐵 ∈ 𝑃 ∧ null(𝐵′)) .

Then, an LS2NF is said acyclic if its graph representation is acyclic (in graph theory). It is well-known
that deciding the acyclicity of a directed graph is solvable in linear-time [Tarjan 1972].

2022-08-02 15:12. Page 10 of 1–26.

Lay-it-out: Interactive Design of Layout-Sensitive Grammars 1:11

In an acyclic LS2NF, the edge set 𝐸 of its graph representation forms a well-founded relation,
called the predecessor relation, written 𝐴 ≺ 𝐵 for (𝐴, 𝐵) ∈ 𝐸. The inverse (or transpose) relation 𝐸−1

is also well-founded, called the successor relation, written 𝐴 ≻ 𝐵 for (𝐵,𝐴) ∈ 𝐸.

Encoding derivation. The key observation to encode a derivation judgment 𝐴⇒∗ 𝑤 (𝑤 ≠ 𝜀) is
that, it can be rewritten (being logically equivalent) in a “more verbose” disjunctive form that is
closer to an SMT formula:

(𝐴⇒∗ 𝑤) ⇔
∨

𝐴→𝑎∈𝑃
(|𝑤 | = 1 ∧𝑤𝑖 .term = 𝑎) ∨

∨
𝐴→𝐵𝜑 ∈𝑃

(𝐵⇒∗ 𝑤 ∧ 𝜑 (𝑤))

∨
∨

𝐴→𝐵1𝜑𝐵2∈𝑃
𝑤=𝑤1𝑤2

(𝐵1⇒∗ 𝑤1 ∧ 𝐵2⇒∗ 𝑤2 ∧ 𝜑 (𝑤1,𝑤2))
(1)

where the three disjuncts enumerate all possible ways to achieve 𝐴⇒∗ 𝑤 by production rule
𝐴 → 𝛼 ∈ 𝑃 where 𝛼 can be an atomic, a unary or a binary clause. Formula Φ𝐷 (𝑘) provides
restrictions that every D𝐴

𝑥,𝛿
is true iff 𝐴⇒∗ 𝑤𝑚

𝑥,𝛿
, and the latter is a direct translation of Eq. (1):

Φ𝐷 (𝑘) := ∀𝐴 ∈ 𝑁, 0 < 𝛿 ≤ 𝑘 − 𝑥 : D𝐴
𝑥,𝛿
⇔∨

𝐴→𝑎∈𝑃
(𝛿 = 1 ∧ T𝑥 = 𝑎) ∨

∨
𝐴→𝐵𝜑 ∈𝑃

(D𝐵
𝑥,𝛿
∧ Φ𝜑 (𝑥, 𝛿)) ∨

∨
𝐴→𝐵1𝜑𝐵2∈𝑃(

(null(𝐵1) ∧ D𝐵2
𝑥,𝛿
) ∨ (null(𝐵2) ∧ D𝐵1

𝑥,𝛿
) ∨

∨
0<𝛿′<𝛿

(D𝐵1
𝑥,𝛿′ ∧ D

𝐵2
𝑥+𝛿′,𝛿−𝛿′ ∧ Φ𝜑 (𝑥, 𝛿 ′, 𝛿))

)
In this formula, the three disjuncts on the rhs of⇔ respectively correspond to the three disjuncts
in Eq. (1). The last disjunct of Eq. (1) is split into three cases, depending on if 𝑤1 or 𝑤2 is empty.
This is necessary because D𝐵1

𝑥,𝛿′ is only defined for nonempty subwords (𝛿 ′ > 0).
Moreover, for every possible layout constraint 𝜑 used in the grammar, we assume there is an

SMT formula that consistently encodes its semantics: (1) for unary constraint 𝜑 , Φ𝜑 (𝑥, 𝛿) holds iff
𝜑 (𝑤𝑚

𝑥,𝛿
); (2) for binary constraint 𝜑 , Φ𝜑 (𝑥, 𝛿 ′, 𝛿) holds iff 𝜑 (𝑤𝑚

𝑥,𝛿′,𝑤
𝑚
𝑥+𝛿′,𝛿−𝛿′). The encodings for the

built-in layout constraints are trivially obtained via a direct translation of their definitions (Fig. 3).

Lemma 5.1. If𝑚 |= Φ𝐷 (𝑘), then for every 𝐴 ∈ 𝑁 , 0 < 𝛿 < 𝑘 − 𝑥 ,𝑚(D𝐴
𝑥,𝛿
) = true iff 𝐴⇒∗ 𝑤𝑚

𝑥,𝛿
.

Proof Sketch. By well-founded induction on 𝛿 and ≺. □

Encoding reachability. The idea of rewriting a derivation judgment as a disjunctive form
applies to a reachability judgment too:

(𝑆,𝑤) →∗ (𝐵,𝑤𝐵) ⇔ (𝐵 = 𝑆 ∧𝑤𝐵 = 𝑤) ∨
∨

𝐴→𝐵𝜑 ∈𝑃
((𝑆,𝑤) →∗ (𝐴,𝑤𝐵) ∧ 𝜑 (𝑤𝐵))

∨
∨

𝐴→𝐵𝜑𝐵′∈𝑃
((𝑆,𝑤) →∗ (𝐴,𝑤𝐵𝑤

′) ∧ 𝐵′⇒∗ 𝑤 ′ ∧ 𝜑 (𝑤𝐵,𝑤
′))

∨
∨

𝐴→𝐵′𝜑𝐵∈𝑃
((𝑆,𝑤) →∗ (𝐴,𝑤 ′𝑤𝐵) ∧ 𝐵′⇒∗ 𝑤 ′ ∧ 𝜑 (𝑤 ′,𝑤𝐵))

(2)

It encodes→∗, the reflexive and transitive closure of→1, by explicitly stating reflexivity as the first
disjunct, and then integrating transitivity into→1, yielding the last three disjuncts that respectively
correspond to the three rules for→1 as defined in Definition 4.2. Depending on whether 𝑤𝐵 is

2022-08-02 15:12. Page 11 of 1–26.

1:12 Fengmin Zhu, Jiangyi Liu, and Fei He

empty, we obtain the encodings of Φ𝜀
𝑅
(𝑘) and Φ�̸�

𝑅
(𝑘) via a translation of Eq. (2):

Φ𝜀
𝑅 (𝑘) := ∀𝐵 ∈ 𝑁 : R𝐵

𝜀 ⇔

(𝐵 = 𝑆 ∧ 𝑘 = 0) ∨
∨

𝐴→𝐵𝜑 ∈𝑃
R𝐴
𝜀 ∨

∨
𝐴→𝐵𝜑𝐵′∈𝑃

𝑜𝑟𝐴→𝐵′𝜑𝐵∈𝑃

(
(R𝐴

𝜀 ∧ null(𝐵′)) ∨
∨

0<𝛿≤𝑘−𝑥
(R𝐴

𝑥,𝛿
∧ D𝐵′

𝑥,𝛿
)
)

Φ�̸�

𝑅
(𝑘) := ∀𝐵 ∈ 𝑁, 0 < 𝛿 ≤ 𝑘 − 𝑥 : R𝐵

𝑥,𝛿
⇔

(𝐵 = 𝑆 ∧ 𝑥 = 0 ∧ 𝛿 = 𝑘) ∨
∨

𝐴→𝐵𝜑 ∈𝑃
(R𝐴

𝑥,𝛿
∧ Φ𝜑 (𝑥, 𝛿))

∨
∨

𝐴→𝐵𝜑𝐵′∈𝑃
(R𝐴

𝑥,𝛿+𝛿′ ∧ ite(𝛿
′ = 0, null(𝐵′),D𝐵′

𝑥+𝛿,𝛿′) ∧ Φ𝜑 (𝑥, 𝛿, 𝛿 ′))

∨
∨

𝐴→𝐵′𝜑𝐵∈𝑃
(R𝐴

𝑥−𝛿′,𝛿′+𝛿 ∧ ite(𝛿
′ = 0, null(𝐵′),D𝐵′

𝑥−𝛿′,𝛿′) ∧ Φ𝜑 (𝑥 − 𝛿 ′, 𝛿 ′, 𝛿))

The layout predicates 𝜑 (𝑤𝐵), 𝜑 (𝑤𝐵,𝑤
′) and 𝜑 (𝑤 ′,𝑤𝐵) of Eq. (2) are not translated in Φ𝜀

𝑅
(𝑘) because

they trivially hold (𝑤𝐵 = 𝜀). When translating 𝐵′⇒∗ 𝑤 ′ of Eq. (2), we must be careful that 𝑤 ′

might be empty: In Φ𝜀
𝑅
(𝑘),𝑤 ′ is always empty so the translation is null(𝐵′). In Φ�̸�

𝑅
(𝑘), we use the

“if-then-else” predicate ite(𝑐,Φ1,Φ2), a shorthand for (𝑐 ∧ Φ1) ∨ (¬𝑐 ∧ Φ2), to cover both cases.

Lemma 5.2. If𝑚 |= Φ𝐷 (𝑘) ∧ Φ𝜀
𝑅
(𝑘), then for every 𝐵 ∈ 𝑁 ,𝑚(R𝐵

𝜀) = true iff (𝑆,𝑤𝑚) →∗ (𝐵, 𝜀).

Proof Sketch. By well-founded induction on ≻ (reverse of ≺). Apply Lemma 5.1 where neces-
sary. □

Lemma 5.3. If 𝑚 |= Φ𝐷 (𝑘) ∧ Φ�̸�

𝑅
(𝑘), then for every 𝐵 ∈ 𝑁 , 0 < 𝛿 < 𝑘 − 𝑥 , 𝑚(R𝐵

𝑥,𝛿
) = true iff

(𝑆,𝑤𝑚) →∗ (𝐵,𝑤𝑚
𝑥,𝛿
).

Proof Sketch. Bywell-founded induction on𝑘−𝛿 and≻. Apply Lemma 5.1where necessary. □

Encoding the existence of dissimilar parse trees. Our goal is to express “there exist two
dissimilar parse trees that witness 𝐻⇒∗𝑤𝑚

𝑥,𝛿
” in an SMT formula Φmulti (𝐻, 𝑥, 𝛿). The key technical

problem is how to encode the existence of two such dissimilar parse trees. By definition, to tell if
two given parse trees are similar or not, it suffices to only compare their children of the root nodes6.
Since every parse tree 𝑡 is a visual representation of a derivation trace for root(𝑡) ⇒∗ word(𝑡) (or a
proof tree that evidences the validity of that derivation judgment), and that the root node with its
children on the parse tree corresponds to the first step of the trace, “being dissimilar” is essentially
“having at least two derivation traces that differ in the first step”.

Specifically, to make this distinction on two derivation traces for 𝐻 ⇒∗ 𝑤𝑚
𝑥,𝛿

, we use (in the first
step) either two distinct production rules for 𝐻 or one binary rule 𝐻 → 𝐵1 𝜑 𝐵2 in two distinct
ways. In the latter, each splits 𝑤𝑚

𝑥,𝛿
into two parts where the prefix is derivable from 𝐵1 and the

suffix is derivable from 𝐵2, but the length of the two prefixes (and suffixes) are different. Suppose
we can compute the set of all possible choices of such first steps, the formula Φmulti (𝐻, 𝑥, 𝛿) simply
states that “this set has at least two elements”.
We start by defining the elements of this set—possible choices of the first step in deriving

𝐻⇒∗𝑤𝑚
𝑥,𝛿

. A compact syntactic representation could simply be a clause 𝛼 , indicating the production
rule 𝐻 → 𝛼 is chosen. In case a binary rule 𝐻 → 𝐵1 𝜑 𝐵2 is chosen, we further need to specify how

6This coincides with the intuitive explanation of being dissimilar—they differ on a node at level 1.

2022-08-02 15:12. Page 12 of 1–26.

Lay-it-out: Interactive Design of Layout-Sensitive Grammars 1:13

𝑤𝑚
𝑥,𝛿

gets split—an additional parameter, the prefix length, is enough. Thus, we introduce choice
clauses with the following syntax:

𝛾 := 𝜀 | 𝑎 | 𝐵𝜑 | 𝐵𝛿′1 𝜑 𝐵2

where in the last case, 𝛿 ′ (0 ≤ 𝛿 ′ ≤ 𝛿) is the aforementioned prefix length. Semantically, a
choice clause indicates that the derivation 𝐻 ⇒∗ 𝑤𝑚

𝑥,𝛿
must be valid under the condition that the

corresponding first step is taken, which is encodable in SMT formulae:

J𝜀K𝑥,𝛿 := 𝛿 = 0
J𝑎K𝑥,𝛿 := 𝛿 = 1 ∧ T𝑥 = 𝑎

J𝐵𝜑K𝑥,𝛿 := ite(𝛿 = 0, null(𝐵),D𝐵
𝑥,𝛿
∧ Φ𝜑 (𝑥, 𝛿)))

J𝐵𝛿
′

1 𝜑 𝐵2K𝑥,𝛿 := Φ𝜑 (𝑥, 𝛿 ′, 𝛿) ∧ ite(𝛿 ′ = 0, null(𝐵1),D𝐵1
𝑥,𝛿′) ∧ ite(𝛿 = 𝛿 ′, null(𝐵2),D𝐵2

𝑥+𝛿′,𝛿−𝛿′)

The set of all possible choices of the first step in deriving 𝐻 ⇒∗ 𝑤𝑚
𝑥,𝛿

is given by

{𝛾 | 𝛾 ∈ Γ(𝐻, 𝛿) ∧ J𝛾K𝑥,𝛿 },
where

Γ(𝐻, 𝛿) := {𝜖 | 𝐻 → 𝜀 ∈ 𝑃} ∪ {𝑎 | 𝐻 → 𝑎 ∈ 𝑃} ∪ {𝐵𝜑 | 𝐻 → 𝐵𝜑 ∈ 𝑃}
∪ {𝐵𝛿′1 𝜑 𝐵2 | 𝐻 → 𝐵1 𝜑 𝐵2 ∈ 𝑃, 0 ≤ 𝛿 ′ ≤ 𝛿}

gives all choice clauses of𝐻 according to the production rules. With this, the formula Φmulti (𝐻, 𝑥, 𝛿)
should be |{𝛾 | 𝛾 ∈ Γ(𝐻, 𝛿) ∧ J𝛾K𝑥,𝛿 }| ≥ 2, which is equivalent to the following form that uses
Two(P), a standard approach to encode “at least two of the propositions in the set P are true” in
propositional logic:

Φmulti (𝐻, 𝑥, 𝛿) := Two({J𝛾K𝑥,𝛿 }𝛾 ∈Γ (𝐻,𝛿))

Lemma 5.4. Let 𝑥 + 𝛿 ≤ 𝑘 and𝑚 |= Φ𝐷 (𝑘), then𝑚 |= Φmulti (𝐻, 𝑥, 𝛿) iff there exist two dissimilar
parse trees that witness 𝐻 ⇒∗ 𝑤𝑚

𝑥,𝛿
.

5.3 Formal Properties

For any acyclic LS2NF and any length 𝑘 ≥ 0, the proposed SMT encoding is sound and complete:

Theorem 5.5 (Soundness). If𝑚 |= Φ(𝑘), then 𝑆⇒∗ 𝑤𝑚 is ambiguous.

Proof Sketch. By Theorem 4.5 it suffices to show local ambiguity, which is straightforward by
applying Lemmas 5.2 to 5.4. □

Theorem 5.6 (Completeness). If there exists𝑤 such that |𝑤 | = 𝑘 and 𝑆⇒∗ 𝑤 is ambiguous, then
Φ(𝑘) is satisfiable.

Proof Sketch. By Theorem 4.5 we have (𝑆,𝑤) →∗ (𝐻,ℎ). We pick a model𝑚 s.t.

𝑤𝑚 = 𝑤

𝑚(D𝐴
𝑥,𝛿
) ⇔ 𝐴⇒∗ 𝑤𝑚

𝑥,𝛿

𝑚(R𝐵
𝜀) ⇔ (𝑆,𝑤) →∗ (𝐵, 𝜀)

𝑚(R𝐵
𝑥,𝛿
) ⇔ (𝑆,𝑤) →∗ (𝐵,𝑤𝑚

𝑥,𝛿
)

By definition, Φ𝐷 (𝑘), Φ𝜀
𝑅
(𝑘) and Φ�̸�

𝑅
(𝑘) are satisfiable. Given that (𝑆,𝑤) →∗ (𝐻,ℎ), ℎ must be a

subword of𝑤 , say ℎ = 𝑤𝑥ℎ,𝛿ℎ for some 𝑥ℎ , 𝛿ℎ . By Lemma 5.4, Φmulti (𝐻, 𝑥ℎ, 𝛿ℎ) is satisfiable. □

2022-08-02 15:12. Page 13 of 1–26.

1:14 Fengmin Zhu, Jiangyi Liu, and Fei He

For every length 𝑘 , 𝑂 (𝑘2) SMT variables are created, and for each variable, an enumeration loop
similar to CYK [Younger 1967] creates 𝑂 (𝑘) terms, where we also use 𝑂 (𝑛) space to go through
the 𝑛 production rules. Thus, the space complexity for Φ(𝑘) is 𝑂 (𝑛 · 𝑘3).

5.4 Ambiguous Sentence Generation

Our bounded ambiguity checker is facilitated by a bounded loop where the bound is specified by
the user. In the 𝑘-th iteration (initially 𝑘 = 1), logical constraints for finding an ambiguous sentence
with length 𝑘 are encoded as an SMT formula Φ(𝑘). We rely on a backend SMT solver (e.g., Z3)
to check its satisfiability: if it is satisfiable under some model, say𝑚 |= Φ(𝑘), then we are able to
decode an ambiguous sentence𝑤𝑚 from𝑚, and the loop exits immediately; otherwise, the next
iteration is entered until the user-specified loop bound is reached. In this way, a shortest nonempty
ambiguous sentence is obtained.

6 LAYOUT CONSTRAINT SYNTHESIS

In Lay-it-out, user interaction happens when an ambiguous sentence is found. The user describes
their intent in disambiguating this sentence by formatting it in distinct ways to accord with the
parse trees, as demonstrated in § 2. Then, the layout constraint synthesizer recommends a set of
candidate layout transformation rules, each of which transforms a layout-free clause into one with
layout constraint. The user selects a subset to accept, and Lay-it-out applies them to the original
grammar, yielding a refined grammar with layout constraints added. Intuitively, the output grammar
is more restricted (“less ambiguous”) than the original one. The more rounds of interactions being
made, the closer the refined grammar will be to the user’s expectation.

6.1 Refinement

The synthesis algorithm aims to refine an input grammar. This notion is defined as follows:

Definition 6.1 (Refinement). Let𝐺 = (𝑁, Σ, 𝑃, 𝑆) and𝐺 ′ = (𝑁, Σ, 𝑃 ′, 𝑆) by two LS2NFs. We say𝐺 ′
is a refinement of 𝐺 , if for every production rule 𝑟 ∈ 𝑃 ′, one of the following holds:
(1) 𝑟 ∈ 𝑃 ;
(2) (𝐴→ 𝐵) ∈ 𝑃 and 𝑟 = 𝐴→ 𝐵𝜑 for some 𝜑 ;
(3) (𝐴→ 𝐵𝐶) ∈ 𝑃 and 𝑟 = 𝐴→ 𝐵 𝜑 𝐶 for some 𝜑 .

Proposition 6.2. Let 𝐺 ′ be a refinement of 𝐺 . If 𝑤 is unambiguous under 𝐺 , then it is also
unambiguous under 𝐺 ′.

This proposition explains the key idea of the refinement relation: no more ambiguous sentences
are introduced in the refined grammar, with several layout constraints added (case (2) and (3) of
Definition 6.1). However, the refined grammar might be equal to the original one as the relation is
reflexive. To avoid this useless case, the user is asked to accept at least one candidate synthesized
by the algorithm (otherwise, the algorithm fails) so that the refined grammar will contain fewer
ambiguous sentences. In this way, our grammar refinement loop is converging.

6.2 Synthesis Algorithm

Our synthesis algorithm (Algorithm 1) takes an original grammar with user feedback as input and
produces a refined grammar (when not fail) according to the user’s selection of layout transformation
rules. The user feedback 𝐹 is a set of reformatted sentences. The algorithm builds the parse trees 𝑡𝑤
for each𝑤 ∈ 𝐹 under the original grammar 𝐺 (line 7). Based on these parse trees, candidate layout
transformation rules are synthesized. Each layout transformation rule is in the form of 𝛼 { 𝛼 ′, by
Definition 6.1, the two clauses 𝛼 and 𝛼 ′ must contain the same nonterminals and the left-hand side

2022-08-02 15:12. Page 14 of 1–26.

Lay-it-out: Interactive Design of Layout-Sensitive Grammars 1:15

Algorithm 1: Layout Constraint Synthesis
Input: grammar 𝐺 = (𝑁, Σ, 𝑃, 𝑆), user’s feedback 𝐹

Output: refined grammar 𝐺 ′
1 foreach 𝑟 ∈ 𝑃 do
2 if 𝑟 = 𝐴→ 𝐵 then
3 Ψ[𝑟] ← {𝐵 { 𝐵𝜑 | 𝜑 ∈ Φunary}
4 else if 𝑟 = 𝐴→ 𝐵1𝐵2 then
5 Ψ[𝑟] ← {𝐵1𝐵2 { 𝐵1 𝜑 𝐵2 | 𝜑 ∈ Φbinary}

6 foreach𝑤 ∈ 𝐹 do
7 𝑡𝑤 ← parse tree of𝑤
8 foreach 𝑡 ∈ 𝑡𝑤 in depth-first order do
9 if 𝑡 = unary(𝐴, 𝑡 ′) then
10 let 𝐵 = root(𝑡 ′),𝑤 = word(𝑡 ′)
11 remove {𝐵 { 𝐵𝜑 | ¬𝜑 (𝑤)} from Ψ[𝐴→ 𝐵]
12 else if 𝑡 = binary(𝐴, 𝑡1, 𝑡2) then
13 let 𝐵𝑖 = root(𝑡𝑖),𝑤𝑖 = word(𝑡𝑖) for 𝑖 = 1, 2
14 remove {𝐵1𝐵2 { 𝐵1 𝜑 𝐵2 | ¬𝜑 (𝑤1,𝑤2)} from Ψ[𝐴→ 𝐵1𝐵2]

15 if ∀𝑟 : Ψ[𝑟] = ∅ then return “inconsistent”
16 let ∅ ≠ Ψ′ ⊆ ⋃

𝑟 ∈𝑃 Ψ[𝑟] be the user accepted candidates
17 𝐺 ′ ← apply Ψ′ to 𝐺
18 return 𝐺 ′

must be layout-free. Otherwise, inconsistent layout constraints are potentially introduced in the
refined grammar, which is forbidden in our approach.
Realizing that the set of layout constraints one uses in a concrete grammar is determined and

finite, the synthesis algorithm can be facilitated in an enumerative fashion: every possible layout
constraint is attempted, and the ones that are consistent, i.e., all parse trees are still valid when the
layout constraint is added, are included in the candidate set. By default, our algorithm considers all
the built-in layout constraints (§ 3).
In the algorithm, we use Ψ[𝑟] to maintain the set of all layout transformation rules for 𝑟 that

are consistent with the parse trees we have visited so far. The complete set of candidates is their
union

⋃
𝑟 ∈𝑃 Ψ[𝑟]. Before any parse tree is visited, Ψ[𝑟] is initialized to the full set (line 3 and 5),

including all possible unary (and binary) layout constraints Φunary (and Φbinary). Then, we traverse
every subtree 𝑡 in every parse tree 𝑡𝑤 of𝑤 ∈ 𝐹 (line 6 and 8) and remove the inconsistent ones in
the corresponding Ψ[𝑟] (note that 𝑟 matches the structure of 𝑡), by checking if the layout constraint
is fulfilled on 𝑡 (line 11 and 14). When all parse trees get processed, Ψ[𝑟] now contains the set of
all consistent rules. If Ψ[𝑟] is empty for all 𝑟 , then 𝐺 cannot be refined due to inconsistency (line
15). Otherwise, the user selects a subset of the candidate transformation rules (line 16), then the
algorithm applies them on 𝐺 (line 17), yielding a refined grammar 𝐺 ′ (line 18).

7 COQMECHANIZATION

All the definitions and theorems presented in § 4 and § 5 were mechanized in the Coq proof assistant.
Our proof artifact7 consists of 10 Coq files and ~2 k lines of code (excluding comments and blanks).

7https://github.com/lay-it-out/LS2NF-theory

2022-08-02 15:12. Page 15 of 1–26.

https://github.com/lay-it-out/LS2NF-theory

1:16 Fengmin Zhu, Jiangyi Liu, and Fei He

It relies on helpers lemmas (mostly on lists) from a popular library coq-stdpp8. On a MacBook Pro
with an Apple M1 chip and 16GB memory, a complete verification took ~12 s.

There was only one axiom we made: in the type “grammar Σ 𝑁 ” for LS2NFs, the two type
parameters Σ and 𝑁 (they resp. encode the terminal and nonterminal set) have decidable equality,
that is, any two elements are either equal or not equal (i.e., in Coq notion ∀𝑥,𝑦 : {𝑥 = 𝑦} + {𝑥 ≠ 𝑦}).
This is true in reality: the terminal and nonterminal sets consist of a finite number of user-specified
symbols whose equality can be trivially judged.

8 IMPLEMENTATION

We implemented the proposed interactive grammar design framework as a prototype system called
Lay-it-out9. It has a graphical frontend for user interaction, and a backend that realizes the core
functionality—ambiguous sentence generation and layout constraint synthesis. The two were
connected via a group of RESTful APIs and WebSocket.

The frontend was developed in Vue.js, a JavaScript Framework for building web user interfaces
(UIs). Web UIs were built to support: (1) viewing the parse trees of a generated ambiguous sentence,
(2) reformatting the ambiguous sentence via clicks and drags, and (3) selecting layout constraints
from a candidate set. The frontend also supports loading input grammars from EBNF files and
saving refined grammars to EBNF files.

The backend was developed in Python 3. Requests from the Web UI are delegated to the backend
with the help of a middleware programmed in Node.js. Mainly three APIs are supported. (1)
Preprocessing: Load an input grammar (in EBNF) and reduce it into an LS2NF. Meanwhile, nullable
nonterminals are precomputed via breadth-first search [Lange and Leiß 2009], and cycles are
detected via Tarjan’s algorithm [Tarjan 1972] performed on the graph representation of the LS2NF
(the cyclic rules will be reported, and the user is required to remove them manually). (2) Ambiguous
sentence generation: Generate a shortest ambiguous sentence (if any) following the bounded loop
explained in § 5.4. SMT formulae are generated according to § 5.2 and we rely on the PySMT library
[Gario and Micheli 2015] to invoke the Z3 solver. (3) Layout constraint synthesis: Recommend
candidate layout constraints based on the user’s feedback, following Algorithm 1.

9 EVALUATION

At the heart of Lay-it-out is a novel semi-automated approach for designing layout-sensitive
grammars, where the layout constraints are synthesized and confirmed through possibly multiple
rounds of user interaction. To better understand the effectiveness of this approach and its pros and
cons over the traditional manual approach—users specify layout constraints totally by hand—we
conducted a comprehensive evaluation to seek answers to the following research questions:

• RQ1: How effective is Lay-it-out at disambiguating grammars?
• RQ2: How useful is Lay-it-out, from the user’s perspective?

We answer RQ1 by case studies of two real-world layout-sensitive grammars (§ 9.1,§ 9.2) and
RQ2 via a user study on 8 recruited participants (§ 9.3).

Environment. All experiments were conducted on a machine with AMD(R) EPYC(TM) 7H12
CPU and 1024 GB memory, running Ubuntu 20.04 and Python version 3.9.7. We set bound 𝑘 = 20
for ambiguity checking.

8https://gitlab.mpi-sws.org/iris/stdpp
9The artifact, together with the evaluation data (of the next section), is included in our supplementary material.

2022-08-02 15:12. Page 16 of 1–26.

https://gitlab.mpi-sws.org/iris/stdpp

Lay-it-out: Interactive Design of Layout-Sensitive Grammars 1:17

start→ block-node
block-node→ tokens | block-sequence | block-map

off-node→ token | block-map
off0-node→ block-sequence

tokens→ token∗

token→ t

block-sequence→ ∥sequence-item∥+ (3)

sequence-item→ (- start)▷ (4)
block-map→ key-val

key-val→ explicit-key-val | implicit-key-val
explicit-key-val→ explicit-key ∥ explicit-val (5)

explicit-key→ off-explicit-key | off0-explicit-key
off-explicit-key→ (? off-node)▷ (6)

off0-explicit-key→ (? off0-node)Q (7)
explicit-val→ off-explicit-val | off0-explicit-val

off-explicit-val→ (: off-node)▷ (8)

off0-explicit-val→ (: off0-node)Q (9)
implicit-key-val→ off-implicit-key-val | off0-implicit-key-val

off-implicit-key-val→ implicit-key off-node
off0-implicit-key-val→ implicit-key off0-node

implicit-key→ Ltokens :M (10)

Fig. 5. The final refined grammar (after 3 rounds of interaction) of YAML’s layout-sensitive subset. The initial

input grammar is the layout-free version.

9.1 Case Study: YAML

YAML is a human-readable serialization format for both describing configurations and exchanging
data between systems/applications. In this case study, we reproduced the design phase of YAML’s
layout-sensitive subset extracted from its language reference. This subset covers a rich set of
layout-sensitive features and is conceptually complex because lists and maps are allowed to be
deeply nested.

Fig. 5 depicts both the initial and the final refined versions of the studied grammar, with 21 rules
in EBNF and 37 rules in LS2NF. The initial input we fed to Lay-it-out was the layout-free version
(i.e., removal of all layout constraints). It took us three rounds of interactions, with ~30min of
work, until we obtained the refined version that has no ambiguity up to the preset bound (𝑘 = 20).
This refined grammar consists of 8 layout constraints: 2 alignment, 3 offside, 2 offside-align, and 1
one-line.
Detailed information for the three interaction rounds is presented in Table 1. In all rounds, the

ambiguous sentence was generated within 2 seconds. The longest sentence had six tokens (in
rounds 2 and 3, see the second column). The number of parse trees for each generated sentence was
2. The parse trees succinctly represented in equivalent JSON format, together with the reformatted
sentences provided by us based on our understanding of YAML’s official grammar, are listed in the
third column. The layout constraints we added to the initial grammar for each round are listed in
the last column, and in total, we added 8 layout constraints.

2022-08-02 15:12. Page 17 of 1–26.

1:18 Fengmin Zhu, Jiangyi Liu, and Fei He

Table 1. Interaction rounds of disambiguating the YAML’s subset.

Round Ambig. sentence Parse trees with reformatted sentences Layout constraints added
(linking Fig. 5)

1 - -

[null,null]

-

-

[[null]]

-

-

Eq. (3), Eq. (4)

2 ? - : t : -

{[null]:

{"t": [null]}}

?

-

:

t :

-

{[{null: "t"}]:

[null]}

?

-

:

t

:

-

Eq. (5), Eq. (7), Eq. (9)

3
? t

: t

: -

{"t":{"t":[null]}}

?

t

:

t : -

{{"t":"t"}: [null]}

?

t : t

: -

Eq. (6), Eq. (8), Eq. (10)

9.2 Case Study: SASS

SASS is a CSS (Cascading Style Sheets) preprocessor language widely used in web frontend devel-
opment. It is self-described as “Syntactically Awesome Style Sheets”. A survey [Coyier 2012] shows
that among all developers who use a CSS preprocessor, SASS took 41% of the market, being the
second most popular option. As a preprocessor language, SASS has a rich feature set comparable to
general-purpose programming languages, such as nested blocks, mixins, and control structures,
which makes it Turing-complete. Its grammar has 133 lines of rules, which is on the same scale
as Python. These rich features use layout-sensitive syntax, which makes SASS a complex and
interesting case to test the ability of Lay-it-out on designing a complete grammar.

This case study was conducted on the full grammar of SASS. The initial input we fed to Lay-it-
out—the layout-free version—consists of 83 rules in EBNF and 564 rules in LS2NF (after prepro-
cessing). It took us 16 rounds of interactions, with ~10 h amount of work, to obtain a (bounded)
unambiguous grammar. In the refined grammar, 73 layout constraints were added: 17 were Kleene
stars/pluses, 30 were indentation/offside, 2 were alignment, and 24 were one-line.
Among all interaction rounds, the lengths of the generated ambiguous sentences are depicted

in Fig. 6, with 12 being the longest. Each generated ambiguous sentence had two parse trees. On
average, 3.9 constraints were introduced in each round. Like most programming languages, SASS
has a layered structure, e.g., every document is composed of statements, block statements usually
contain a selector and children statements, etc. We exploited the layered structure of SASS in the
last round: we changed the start symbol and generated an ambiguous subword instead.

SMT solving time and formula complexity. We also investigated the execution time under
different sentence length 𝑘 . Here we define the total execution time by “formula generation time
and SMT solving time”. Most iterations finished in 0.5 h (𝑘 < 10) with an exception of 4 cases. The

2022-08-02 15:12. Page 18 of 1–26.

Lay-it-out: Interactive Design of Layout-Sensitive Grammars 1:19

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

round

5

6

7

8

9

10

11

12

s
e
n
t
e
n
c
e
l
e
n
g
t
h
𝑘

Fig. 6. Ambiguous sentence length in each round.

1 2 3 4 5 6 7 8 9 10 11 12

sentence length

0.5

1.0

1.5

2.0

2.5

3.0

n
o
d
e
c
o
u
n
t
(
c
u
b
e
r
o
o
t
c
o
o
r
d
i
n
a
t
e
s
)

1e6

Ambiguous nodes

Deductive nodes

Reachable nodes

Total nodes

Fig. 7. Growth of SMT formula size.

other 4 cases each took around 0.75 h to 1.5 h. For cases within 0.5 h, the average formula size is
303,695. In contrast, the SMT formula sizes of the other 4 cases, annotated on the figure, are all
above 106. In general, formulae of such size are quite hard for SMT solvers.

To characterize the complexity of the encoded formula, we look into the average formula size10
of different sentence lengths. Note that SMT solver was invoked many times in our experiment,
and we collected the formula size of each invocation (no matter whether the solving result is sat or
unsat) as samples. The relationship between SMT formula size and sentence length is plotted in
Fig. 7. We used linear regression to check if the growth conforms to our theoretical complexity. The
𝑅2 is a statistical measure between -1 and 1, indicating how much one variable relates to another.
The regression line has 𝑅2 ≈ 0.9975. Thus, the results are consistent with the theoretical complexity
𝑂 (𝑛 · 𝑘3).

Although the SMT solving took hours due to the large complexity, it is still much better than
manually constructing an ambiguous sentence: without the help of Lay-it-out, we (and we believe
for many users too) would either give up after several hours’ painful attempts or construct a
sentence that is too complicated to analyze the cause of ambiguity.

Answers to RQ1. The two case studies give us confidence that our approach is effective and
robust for a complete grammar design phase. The generated ambiguous sentences were relatively
short. By viewing the parse trees of the generated ambiguous sentences, it was quite intuitive for
us to understand the cause of the ambiguity and provide the reformatted sentences. Moreover,
this intuition gave us insights to select from the suggested layout constraints to eliminate this
ambiguity.

9.3 User Study

This user study targets the usability of Lay-it-out (RQ2). Our main purpose is to study the user’s
preference between the manual and the semi-automated approach for layout-sensitive grammar
design. We prepared ambiguous CFGs as disambiguation tasks and recruited participants to solve
them using the two approaches. Based on their experience obtained from solving the tasks, we
conducted a survey to collect their thoughts, comments, and—most importantly—preferences
between the two approaches.

10The formula size is the number of nodes on its AST representation, computed by the PySMT [Gario and Micheli 2015]
library function pysmt.shortcuts.get_formula_size(f).

2022-08-02 15:12. Page 19 of 1–26.

1:20 Fengmin Zhu, Jiangyi Liu, and Fei He

Table 2. Disambiguation tasks with reference disambiguated grammars.

Lang. Ambiguous CFG Reference disambiguation

T1 YAML
document→ list

list→ item∗
item→ - list | - id

document→ list
list→ ∥item∥∗

item→ (- list)▷ | - id

T2 F#
let-stmt→ let decl∗ in expr

decl→ expr = expr
expr→ id | id id | let-expr

let-stmt→ let ∥decl∥∗ in expr
decl→ (expr = expr)▷
expr→ id | id id | let-expr

T3 F#
start→ match-id rules

match-id→ match id with
rules→ ((| id ->) (start | id))+

start→ match-id � rules
match-id→ Lmatch id withM

rules→ ∥(| id ->) (start | id)▷ ∥∗

T4 Haskell
document→ stmt+
do-block→ do stmt+

stmt→ (main = do-block) | (putStrLn id)

document→ ∥stmt∥+
do-block→ (do ∥stmt∥+)▷

stmt→ (main = do-block)▷ | (putStrLn id)▷

T5 Python

body→ stmt+
for-stmt→ for binder in range(n) : body

stmt→ for-stmt | pass
binder→ (id ,)∗ id

body→ ∥stmt∥+
for-stmt→ Lfor binder in range(n) :M � body

stmt→ for-stmt | pass
binder→ (id ,)∗ id

T6 Haskell

document→ assign-stmt+

assign-stmt→ (id = expr) (where?)
where→ where assign-stmt+
expr→ id + id

document→ ∥assign-stmt∥+

assign-stmt→ ((id = expr) (where?))▷

where→ where ∥assign-stmt∥+
expr→ id + id

T7 YAML

map→ id id map-body
map-body→ expl-or-impl-kv+

expl-kv→ expl-k expl-v?
expl-k→ ? k-or-v
expl-v→ : k-or-v

impl-kv→ id : id?

k-or-v→ (map-body | id)?
expl-or-impl-kv→ expl-kv | impl-kv

map→ id id map-body
map-body→ ∥expl-or-impl-kv∥+

expl-kv→ expl-k ∥ expl-v?
expl-k→ ? k-or-v▷
expl-v→ : k-or-v▷

impl-kv→ (id : id?)▷

k-or-v→ (map-body | id)?
expl-or-impl-kv→ expl-kv | impl-kv

T8 Python

document→ stmt+

stmt→ pass | while-stmt | decl
while-head→ while True :
body-stmt→ stmt | break
while-stmt→ while-head body-stmt+

decl→ ident = list
ident→ foo | bar | baz
list→ [(ident ,)∗ ident]

document→ ∥stmt∥+
stmt→ pass | while-stmt | decl

while-head→ Lwhile True :M
body-stmt→ stmt | break
while-stmt→ while-head � ∥body-stmt∥+

decl→ ident = list
ident→ foo | bar | baz
list→ [(ident ,)∗ ident]

Preparing CFGs as disambiguation tasks. Like in our case studies, we obtained ambiguous
CFGs by removing the layout constraints from layout-sensitive grammars extracted from language
references/manuals. As listed in Table 2, we prepared eight ambiguous CFGs extracted from 4
popular languages as disambiguation tasks, numbered T1-T8. Considering the limited time (~2 h)
that participants have, the maximum number of the production rules (in EBNFs) did not exceed 10.

Recruting participants. The eligible participants for this user study should be potential users
of Lay-it-out: they should have experience in CFGs and basic knowledge of the layout-sensitive
grammars they wish to design. To select potential participants from the students (both undergrad-
uate and graduate) in our university, we developed the following specific requirements: (1) the
participant has taken the compiler course (that covers CFGs and parsing) or reached the same
level of this course; (2) the participant has a reasonable interest in grammar design; and (3) the

2022-08-02 15:12. Page 20 of 1–26.

Lay-it-out: Interactive Design of Layout-Sensitive Grammars 1:21

participant is familiar with the four layout-sensitive languages that appeared in Table 2, tested by a
quiz created by us (the questions were mostly about how to parse a given code snippet). In the end,
we recruited 8 participants: 5 undergraduates and 3 graduates.

Assigning tasks to participants. In order to balance the amount of work for each participant
(numbered P1-P8), we assigned the 8 disambiguation tasks (as listed in Table 2) in the following
way: Odd-numbered participants solve the odd-numbered tasks using the manual approach and the
even-numbered using the semi-automated approach; Even-numbered participants do the opposite.
In this way, each participant was asked to solve 4 tasks manually and the other 4 tasks using
Lay-it-out. Each task was solved the same number of times using two different methods.

Note that we do not simply ask each participant to solve all the tasks in both approaches because
this is indeed biased: For one particular task, whether the participant applies which approach first,
the old knowledge can inevitably influence their solutions using the other approach afterward,
which makes their user experience with the latter approach inaccurate.

Executing the experiments. Prior to the experiments, we gave participants a tutorial of Lay-it-
out’s frontend, which the participants will rely on to solve the disambiguation tasks, including
a new functionality we built for manually adding layout constraints without the aid of Lay-it-
out. Then, the participants started to solve the tasks assigned to them (as mentioned above). We
tested the bounded ambiguity of their submitted grammars for manual tasks against our bounded
ambiguity checker (with bound 𝑘 = 20). We found 6 out of the 32 grammars submitted by 3 out
of the 8 participants were ambiguous due to two reasons: missing a layout constraint and using a
weaker layout constraint (i.e., (·)Q instead of (·)▷). By contrast, no (bounded) ambiguity was found
in the refined grammar for semi-automated tasks.

Distributing questionnaires. After the user experiments, all participants were invited to
provide their responses to 4 survey questions (SQs) in a questionnaire depicted in Fig. 8: SQ1
for measuring the difficulty of the manual approach, SQ2 and SQ3 for evaluating the usability of
Lay-it-out, and SQ4 for the preferences between the two approaches. All participants responded
to all SQs, and their answers are summarized in Fig. 8 too.

Responses to SQ1. Participants rated an average difficulty of 3.6/5.0 on manually adding layout
constraints, with half rated “neutral” and the other half “difficult” or “very difficult”. Regarding
the reasons, all agreed that ensuring the unambiguity of the grammar by hand is difficult, and half
agreed that finding an ambiguous sentence is challenging.

Responses to SQ2 & SQ3. We created these two SQs to evaluate the usability of the two kinds of
interactions a user needs to make: providing reformatted sentences based on an understanding
of the ambiguous sentence with its parse trees, and selecting from the set of recommended lay-
out constraints. For the former, participants scored an average satisfaction of 4.4/5.0, with most
participants (7/8) scored either “satisfied” or “very satisfied”— they are quite satisfied with the
readability of the generated ambiguous sentence and its parse trees. For the latter, participants rated
an average difficulty of 2.6/5.0, with most participants (7/8) rated “very easy”, “easy” or “neutral”—
they found the interaction not hard. We further interviewed the participant who rated “difficult”:
the participant was unsatisfied with the lack of a “undo” command, which we consider a primary
future enhancement of our frontend.

Responses to SQ4 (Answers to RQ2). Based on participants’ votes, all preferred the semi-
automated approach guided by Lay-it-out. Regarding why they made this decision, the top 3
reasons were: (1) Lay-it-out can automatically generate ambiguous sentences, while it is hard
to construct them by hand; (2) Lay-it-out can guarantee a grammar is unambiguous under a

2022-08-02 15:12. Page 21 of 1–26.

1:22 Fengmin Zhu, Jiangyi Liu, and Fei He

SQ1:Howwould you rate the difficulty of manually adding layout constraints to disambiguate
grammars?

★ ✩ ✩ ✩ ✩ (very easy) 0/8
★ ★ ✩ ✩ ✩ (easy) 0/8
★ ★ ★ ✩ ✩ (neutral) 4/8
★ ★ ★ ★ ✩ (difficult) 3/8
★ ★ ★ ★ ★ (very difficult) 1/8

(average: 3.6, median: 3.5)
Why manually adding layout constraints is easy/difficult? (Multiple choice)
It is easy because it is intuitive to figure out the needed layout constraints.

0/8
It is easy because I can quickly identify an ambiguous sentence with its parse trees.

0/8
It is difficult to find an ambiguous sentence.

4/8
It is difficult to guarantee the unambiguity of the grammar.

8/8
It is difficult because I have no idea where to add which layout constraint.

2/8
SQ2: How satisfied are you with the readability of the ambiguous sentences and parse trees
produced by Lay-it-out?

★ ✩ ✩ ✩ ✩ (very unsatisfied) 0/8
★ ★ ✩ ✩ ✩ (unsatisfied) 0/8
★ ★ ★ ✩ ✩ (neutral) 1/8
★ ★ ★ ★ ✩ (satisfied) 3/8
★ ★ ★ ★ ★ (very satisfied) 4/8

(average: 4.4, median: 4.5)
SQ3: How would you rate the difficulty of selecting from the candidate layout constraints
recommended by Lay-it-out?

★ ✩ ✩ ✩ ✩ (very easy) 1/8
★ ★ ✩ ✩ ✩ (easy) 2/8
★ ★ ★ ✩ ✩ (neutral) 4/8
★ ★ ★ ★ ✩ (difficult) 1/8
★ ★ ★ ★ ★ (very difficult) 0/8

(average: 2.6, median: 3.0)
SQ4: Which approach do you think is better?
The manual approach. 0/8
The semi-automated approach guided by Lay-it-out. 8/8

Fig. 8. User survey questions and answers.

certain bound; and (3) Lay-it-out can suggest candidate layout constraints, narrowing down the
possibilities compared to the manual approach. In short, Lay-it-out addresses some of the key
difficulties of the manual approach.

2022-08-02 15:12. Page 22 of 1–26.

Lay-it-out: Interactive Design of Layout-Sensitive Grammars 1:23

9.4 Threats to Validity

The participants we recruited—undergraduate/graduate students from our university—may not
represent all sorts of potential users of Lay-it-out. However, they represent novice users with an
elementary knowledge of grammar. Since they had positive feedback on the usability of Lay-it-out,
we believe that expert users, who are more experienced in grammar, will find this tool even easier
to use.
Due to the limited time the participants could spend on the experiments, the grammars we

prepared (i.e., Table 2) were small. A potential threat is that our findings may not generalize to
larger grammars. We mitigated this issue in two ways. First, we conducted a follow-up via online
meetings with 2 participants, collecting their thoughts on disambiguating the SASS grammar (one
of our case studies, § 9.2). Both said that it is “nearly impossible” to manually disambiguate such a
large grammar, but the semi-automated approach makes disambiguation somewhat easier. Second,
one of the authors conducted case studies (§ 9.1 and § 9.2) on disambiguating a middle-scale and a
large-scale grammar (i.e., SASS) via Lay-it-out. Based on our experience, the usage of the tool on
large grammars is similar to those in the user study. In particular, the autogenerated ambiguous
sentences were helpful in identifying the cause of ambiguity.

10 RELATEDWORK

Layout-sensitive languages & parsing. In 1966, Landin [1966] first introduced layout-sensitive
languages, which has influenced the syntax design of many later programming languages. As an
extension to CFG, Indentation-sensitive CFG (ISCFG) [Adams 2013] is expressive of layout rules and
derives LR(𝑘) and GLR algorithms for parsing these layout-sensitive grammars. In ISCFG, symbols
are annotated with the numerical relation that the indentation of every nonterminal must have
with that of its children. Although ISCFG has a formal theory and is parser-friendly, it takes too
much effort for a human to manually specify those annotations.

In a declarative layout specification [Erdweg et al. 2013], layout constraints are expressed with
primitives that support direct access to the position of a certain “border” of a code block. In order
to realize layout-sensitive parsing, a naive approach is to generate every possible parse tree with
GLR parsing first while neglecting layouts, and then filter with layout constraints. This approach
is, however, inefficient for practical applications. To improve performance, they identify a subset of
constraints that are independent from context-sensitive information and enforce them at parse
time. Later, another version with high-level specification is proposed by Amorim et al. [2018]. Our
grammar declarative specification notations are inspired by theirs. The difference lies in how we
regard layout constraints: in their specification, constraints are attached to a normal layout-free
production rule, whereas in ours, constraints are part of the rule. Apart from generalized parsing,
Iguana [Afroozeh and Izmaylova 2015, 2016] is a novel parsing framework based upon data-
dependent grammars [Jim et al. 2010], which extends a CFG with arbitrary computation, variable
binding and logical constraint. Iguana translates high-level declarations into equations that are
expressive in data-dependent grammars.
Brzozowski derivatives [Brzozowski 1964] have been rediscovered recently to simplify the

explanation to parsers. Brachthäuser et al. [2016] propose a new parser combinator library with
first-class derivatives, gaining fine-grained control over an input stream. It is still an open question
whether their framework can implement alignment and offside rules modularly, e.g., Haskell’s
grammar.

Word enumeration. Madhavan et al. [2015] propose a practical approach to check the equiva-
lence of CFGs, based on random enumeration of parse trees and words. To generate words of a
fixed length, they first transform the input CFG into a restricted CFG that can only derive words

2022-08-02 15:12. Page 23 of 1–26.

1:24 Fengmin Zhu, Jiangyi Liu, and Fei He

of the given length, and then apply the random enumeration on it. Based on our knowledge, it is
more challenging to apply random enumeration techniques to generate ambiguous words. Instead,
constraint solving is more suitable to solve such a conditional search problem.

Grammar synthesis. Is it possible to generate a parser from examples? Mernik et al. [2003]
raised this question and attempted genetic programming methods. In the recent decade, the research
community has had significant interest in programming by examples [Gulwani 2011; Polozov and
Gulwani 2015] and novel approaches have been proposed to automate parser construction.

Parsify [Leung et al. 2015] is a graphical, interactive system for synthesizing and testing parsers
from user-provided examples (a set of sentences). They rely on a GLL parser to identify ambiguous
grammars and a few disambiguation filters [Klint and Visser 1994; Thorup 1996] to eliminate the
well-known associatively and priority issues in grammars of binary expressions. They disambiguate
in an interactive manner: possible parse trees are presented to the user, and only one of them is
accepted. This does not apply in our situation where all parse trees are acceptable simultaneously
due to the inadequate layout information.

Glade [Bastani et al. 2017] is an oracle-based grammar inference system. The algorithm synthe-
sizes a CFG which encodes the language of valid program inputs, beginning with a small set of the
target language that the user provides as seed inputs. Although grammar synthesis is a promising
direction that can ease the design of grammars and parsers, based on our knowledge, there is still
no work on the automated synthesis of layout-sensitive grammars and parsers.

Grammar-based fuzzing. In order to improve the test coverage on programs whose inputs are
highly structured, like compilers and interpreters, grammar-based fuzzing is proposed to leverage
a user-defined grammar for generating syntactically valid inputs. Black-box fuzzing has been
integrated with manually specified grammars to test C compilers [Lindig 2005; Yang et al. 2011],
find bugs in PHP and JavaScript interpreters [Holler et al. 2012], and generate plausible inputs with
the help of a parser merely [Mathis et al. 2019]. There are also studies integrated with white-box
techniques. For example, Godefroid et al. [2008] use a handwritten grammar in combination with
a custom grammar-based constraint solver to fuzz a JavaScript interpreter of Internet Explorer 7.
CESE [Majumdar and Xu 2007] combines exhaustive enumeration of valid inputs with symbolic
execution. In comparison, our problem is to find an ambiguous sentence of the grammar instead of
just a random sentence accepted by the grammar.

11 CONCLUSION

We present Lay-it-out, a framework for layout-sensitive grammar design via user interaction. Our
SMT-based bounded ambiguity checker produces the shortest ambiguous sentences that help a
grammar designer to recognize the ambiguity during the design phase. With a polynomial-space
encoding, the checker scales to the complete SASS grammar. Through user interactions, Lay-it-
out recommends candidate layout constraints for the grammar designer to select, which relieves
the user from manually specifying layout rules. A user study on 8 participants reveals usability
of Lay-it-out, and users gain more benefits than the traditional manual approach of designing
layout-sensitive grammars.

REFERENCES

Michael D. Adams. 2013. Principled Parsing for Indentation-sensitive Languages: Revisiting Landin’s Offside Rule. In
Proceedings of the 40th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (Rome, Italy)
(POPL ’13). ACM, New York, NY, USA, 511–522. https://doi.org/10.1145/2429069.2429129

Ali Afroozeh and Anastasia Izmaylova. 2015. One Parser to Rule Them All. In 2015 ACM International Symposium on New
Ideas, New Paradigms, and Reflections on Programming and Software (Onward!) (Pittsburgh, PA, USA) (Onward! 2015).
ACM, New York, NY, USA, 151–170. https://doi.org/10.1145/2814228.2814242

2022-08-02 15:12. Page 24 of 1–26.

https://doi.org/10.1145/2429069.2429129
https://doi.org/10.1145/2814228.2814242

Lay-it-out: Interactive Design of Layout-Sensitive Grammars 1:25

Ali Afroozeh and Anastasia Izmaylova. 2016. Iguana: A Practical Data-dependent Parsing Framework. In Proceedings of the
25th International Conference on Compiler Construction (Barcelona, Spain) (CC 2016). ACM, New York, NY, USA, 267–268.
https://doi.org/10.1145/2892208.2892234

Alfred V Aho, Ravi Sethi, and Jeffrey D Ullman. 1986. Compilers: Principles, Techniques, and Tools. Addison wesley 7, 8
(1986), 9.

Luís Eduardo de Souza Amorim, Michael J. Steindorfer, Sebastian Erdweg, and Eelco Visser. 2018. Declarative Specification
of Indentation Rules: A Tooling Perspective on Parsing and Pretty-printing Layout-sensitive Languages. In Proceedings of
the 11th ACM SIGPLAN International Conference on Software Language Engineering (Boston, MA, USA) (SLE 2018). ACM,
New York, NY, USA, 3–15. https://doi.org/10.1145/3276604.3276607

Roland Axelsson, Keijo Heljanko, and Martin Lange. 2008. Analyzing Context-Free Grammars Using an Incremental
SAT Solver. In Automata, Languages and Programming, Luca Aceto, Ivan Damgård, Leslie Ann Goldberg, Magnús M.
Halldórsson, Anna Ingólfsdóttir, and Igor Walukiewicz (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 410–422.

Osbert Bastani, Rahul Sharma, Alex Aiken, and Percy Liang. 2017. Synthesizing Program Input Grammars. In Proceedings of
the 38th ACM SIGPLAN Conference on Programming Language Design and Implementation (Barcelona, Spain) (PLDI 2017).
ACM, New York, NY, USA, 95–110. https://doi.org/10.1145/3062341.3062349

Dirk Beyer, Matthias Dangl, and Philipp Wendler. 2018. A unifying view on SMT-based software verification. Journal of
automated reasoning 60, 3 (2018), 299–335.

Nikolaj Bjørner and Leonardo de Moura. 2014. Applications of SMT solvers to program verification. Notes for the Summer
School on Formal Techniques (2014).

Jonathan Immanuel Brachthäuser, Tillmann Rendel, and Klaus Ostermann. 2016. Parsing with First-class Derivatives. In
Proceedings of the 2016 ACM SIGPLAN International Conference on Object-Oriented Programming, Systems, Languages, and
Applications (Amsterdam, Netherlands) (OOPSLA 2016). ACM, New York, NY, USA, 588–606. https://doi.org/10.1145/
2983990.2984026

Janusz A. Brzozowski. 1964. Derivatives of Regular Expressions. J. ACM 11, 4 (Oct. 1964), 481–494. https://doi.org/10.1145/
321239.321249

N Chomsky and MP Schützenberger. 1963. The Algebraic Theory of Context-Free Languages. In Studies in Logic and the
Foundations of Mathematics. Vol. 35. Elsevier, 118–161.

Chris Coyier. 2012. https://css-tricks.com/poll-results-popularity-of-css-preprocessors/
Sebastian Erdweg, Tillmann Rendel, Christian Kästner, and Klaus Ostermann. 2013. Layout-Sensitive Generalized Parsing.

In Software Language Engineering, Krzysztof Czarnecki and Görel Hedin (Eds.). Springer Berlin Heidelberg, Berlin,
Heidelberg, 244–263.

Clark C Evans et al. 2014. Yaml: Yaml ain’t markup language.
Marco Gario and Andrea Micheli. 2015. PySMT: a solver-agnostic library for fast prototyping of SMT-based algorithms. In

SMT workshop, Vol. 2015.
Patrice Godefroid, Adam Kiezun, and Michael Y. Levin. 2008. Grammar-based Whitebox Fuzzing. In Proceedings of the 29th

ACM SIGPLAN Conference on Programming Language Design and Implementation (Tucson, AZ, USA) (PLDI ’08). ACM,
New York, NY, USA, 206–215. https://doi.org/10.1145/1375581.1375607

John Gruber. 2012. Markdown: Syntax. URL http://daringfireball.net/projects/markdown/syntax. Retrieved on June 24 (2012),
640.

Sumit Gulwani. 2011. Automating String Processing in Spreadsheets Using Input-output Examples. In Proceedings of the
38th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (Austin, Texas, USA) (POPL ’11).
ACM, 317–330. https://doi.org/10.1145/1926385.1926423

Christian Holler, Kim Herzig, and Andreas Zeller. 2012. Fuzzing with Code Fragments. In Proceedings of the 21st USENIX
Conference on Security Symposium (Bellevue, WA) (Security’12). USENIX Association, Berkeley, CA, USA, 38–38. http:
//dl.acm.org/citation.cfm?id=2362793.2362831

John E Hopcroft, Rajeev Motwani, and Jeffrey D Ullman. 2001. Introduction to automata theory, languages, and computation.
Acm Sigact News 32, 1 (2001), 60–65.

Susmit Jha, Sumit Gulwani, Sanjit A. Seshia, and Ashish Tiwari. 2010. Oracle-Guided Component-Based Program Synthesis.
In Proceedings of the 32nd ACM/IEEE International Conference on Software Engineering - Volume 1 (Cape Town, South Africa)
(ICSE ’10). Association for Computing Machinery, New York, NY, USA, 215–224. https://doi.org/10.1145/1806799.1806833

Trevor Jim, Yitzhak Mandelbaum, and David Walker. 2010. Semantics and Algorithms for Data-dependent Grammars. In
Proceedings of the 37th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (Madrid,
Spain) (POPL ’10). ACM, New York, NY, USA, 417–430. https://doi.org/10.1145/1706299.1706347

Ian Johnson. 2009. Formal Verification with SMT Solvers: Why and How. In ACL2 Theorem Proving Seminar at the University
of Texas, Autin.

Paul Klint and Eelco Visser. 1994. Using filters for the disambiguation of context-free grammars. In Proc. ASMICS Workshop
on Parsing Theory. Citeseer, 1–20.

2022-08-02 15:12. Page 25 of 1–26.

https://doi.org/10.1145/2892208.2892234
https://doi.org/10.1145/3276604.3276607
https://doi.org/10.1145/3062341.3062349
https://doi.org/10.1145/2983990.2984026
https://doi.org/10.1145/2983990.2984026
https://doi.org/10.1145/321239.321249
https://doi.org/10.1145/321239.321249
https://css-tricks.com/poll-results-popularity-of-css-preprocessors/
https://doi.org/10.1145/1375581.1375607
https://doi.org/10.1145/1926385.1926423
http://dl.acm.org/citation.cfm?id=2362793.2362831
http://dl.acm.org/citation.cfm?id=2362793.2362831
https://doi.org/10.1145/1806799.1806833
https://doi.org/10.1145/1706299.1706347

1:26 Fengmin Zhu, Jiangyi Liu, and Fei He

Donald E Knuth. 1965. On the translation of languages from left to right. Information and control 8, 6 (1965), 607–639.
P. J. Landin. 1966. The Next 700 Programming Languages. Commun. ACM 9, 3 (March 1966), 157–166. https://doi.org/10.

1145/365230.365257
Martin Lange and Hans Leiß. 2009. To CNF or not to CNF? An efficient yet presentable version of the CYK algorithm.

Informatica Didactica 8, 2009 (2009), 1–21.
Rustan Leino. 2010. Dafny: An Automatic Program Verifier for Functional Correctness. In 16th International Conference,

LPAR-16, Dakar, Senegal (16th international conference, lpar-16, dakar, senegal ed.). Springer Berlin Heidelberg, 348–370.
https://www.microsoft.com/en-us/research/publication/dafny-automatic-program-verifier-functional-correctness-2/

Alan Leung, John Sarracino, and Sorin Lerner. 2015. Interactive Parser Synthesis by Example. In Proceedings of the 36th
ACM SIGPLAN Conference on Programming Language Design and Implementation (Portland, OR, USA) (PLDI ’15). ACM,
New York, NY, USA, 565–574. https://doi.org/10.1145/2737924.2738002

John Levine. 2009. Flex & Bison: Text Processing Tools. " O’Reilly Media, Inc.".
John R Levine, John Mason, John R Levine, John R Levine, Paul Levine, Tony Mason, and Doug Brown. 1992. Lex & yacc. "

O’Reilly Media, Inc.".
Christian Lindig. 2005. Random Testing of C Calling Conventions. In Proceedings of the Sixth International Symposium on

Automated Analysis-driven Debugging (Monterey, California, USA) (AADEBUG’05). ACM, New York, NY, USA, 3–12.
https://doi.org/10.1145/1085130.1085132

Ravichandhran Madhavan, Mikaël Mayer, Sumit Gulwani, and Viktor Kuncak. 2015. Automating Grammar Comparison. In
Proceedings of the 2015 ACM SIGPLAN International Conference on Object-Oriented Programming, Systems, Languages, and
Applications (Pittsburgh, PA, USA) (OOPSLA 2015). Association for Computing Machinery, New York, NY, USA, 183–200.
https://doi.org/10.1145/2814270.2814304

Rupak Majumdar and Ru-Gang Xu. 2007. Directed Test Generation Using Symbolic Grammars. In Proceedings of the
Twenty-second IEEE/ACM International Conference on Automated Software Engineering (Atlanta, Georgia, USA) (ASE ’07).
ACM, New York, NY, USA, 134–143. https://doi.org/10.1145/1321631.1321653

Simon Marlow et al. 2010. Haskell 2010 language report. Available online http://www.haskell.org/(May 2011) (2010).
Björn Mathis, Rahul Gopinath, Michaël Mera, Alexander Kampmann, Matthias Höschele, and Andreas Zeller. 2019. Parser-

directed Fuzzing. In Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and Implementa-
tion (Phoenix, AZ, USA) (PLDI 2019). ACM, New York, NY, USA, 548–560. https://doi.org/10.1145/3314221.3314651

Marjan Mernik, Goran Gerlič, Viljem Žumer, and Barrett R. Bryant. 2003. Can a Parser Be Generated from Examples?. In
Proceedings of the 2003 ACM Symposium on Applied Computing (Melbourne, Florida) (SAC ’03). ACM, New York, NY,
USA, 1063–1067. https://doi.org/10.1145/952532.952740

Phitchaya Mangpo Phothilimthana, Aditya Thakur, Rastislav Bodik, and Dinakar Dhurjati. 2016. Scaling up Superoptimiza-
tion. SIGARCH Comput. Archit. News 44, 2 (March 2016), 297–310. https://doi.org/10.1145/2980024.2872387

Oleksandr Polozov and Sumit Gulwani. 2015. FlashMeta: A framework for inductive program synthesis. ACM SIGPLAN
Notices 50, 10 (2015), 107–126.

Andrew Reynolds, Morgan Deters, Viktor Kuncak, Cesare Tinelli, and Clark Barrett. 2015. Counterexample-Guided
Quantifier Instantiation for Synthesis in SMT. In Computer Aided Verification, Daniel Kroening and Corina S. Păsăreanu
(Eds.). Springer International Publishing, Cham, 198–216.

Don Syme, Luke Hoban, Tao Liu, Dmitry Lomov, James Margetson, Brian McNamara, Joe Pamer, Penny Orwick, Daniel
Quirk, Chris Smith, et al. 2010. The F# 2.0 language specification. Microsoft, August (2010).

Robert Tarjan. 1972. Depth-first search and linear graph algorithms. SIAM journal on computing 1, 2 (1972), 146–160.
Mikkel Thorup. 1996. Disambiguating grammars by exclusion of sub-parse trees. Acta Informatica 33, 6 (1996), 511–522.
Guido Van Rossum and Fred L Drake. 2011. The python language reference manual. Network Theory Ltd.
Eelco Visser et al. 1997. Syntax definition for language prototyping. Eelco Visser.
Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. 2011. Finding and Understanding Bugs in C Compilers. In Proceedings

of the 32Nd ACM SIGPLAN Conference on Programming Language Design and Implementation (San Jose, California, USA)
(PLDI ’11). ACM, New York, NY, USA, 283–294. https://doi.org/10.1145/1993498.1993532

Daniel H Younger. 1967. Recognition and parsing of context-free languages in time n3. Information and control 10, 2 (1967),
189–208.

2022-08-02 15:12. Page 26 of 1–26.

https://doi.org/10.1145/365230.365257
https://doi.org/10.1145/365230.365257
https://www.microsoft.com/en-us/research/publication/dafny-automatic-program-verifier-functional-correctness-2/
https://doi.org/10.1145/2737924.2738002
https://doi.org/10.1145/1085130.1085132
https://doi.org/10.1145/2814270.2814304
https://doi.org/10.1145/1321631.1321653
https://doi.org/10.1145/3314221.3314651
https://doi.org/10.1145/952532.952740
https://doi.org/10.1145/2980024.2872387
https://doi.org/10.1145/1993498.1993532

	Abstract
	1 Introduction
	2 Lay-it-out by Example
	3 Preliminary
	4 Local Ambiguity
	4.1 Motivation: Lessons from a Failure Attempt
	4.2 Reachability: The Missing Piece
	4.3 Local Ambiguity: Foundation of SMT Encoding

	5 Bounded Ambiguity Checking
	5.1 Satisfying Model
	5.2 SMT Encoding
	5.3 Formal Properties
	5.4 Ambiguous Sentence Generation

	6 Layout Constraint Synthesis
	6.1 Refinement
	6.2 Synthesis Algorithm

	7 Coq Mechanization
	8 Implementation
	9 Evaluation
	9.1 Case Study: YAML
	9.2 Case Study: SASS
	9.3 User Study
	9.4 Threats to Validity

	10 Related Work
	11 Conclusion
	References

