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History & Trends in Software Development

In the past:

@ Write programs that can work

@ Write programs that runs fast
Issues:

@ Write it once, debug it everywhere

@ No silver bullet

@ Many programmers don't welcome changes
Nowadays and in future:

@ Write programs that are correct

@ Write programs that generate programs
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Program Synthesis!

Program Synthesis is the task of automatically finding programs
from the underlying programming language that satisfy user in-
tent expressed in some form of constraints. (Gulwani, Polozov,
and Singh 2017)

Features:

@ automated programming

@ correctness-by-construction
V.S.

@ compilers

@ code generator
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Today

@ Program Synthesis in Action

e Programming by Examples
@ Case Study: FlashFill

© Sketch-based Synthesis
@ Case Study: Rosette
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FlashFill

Automated String Processing in Spreadsheets by Examples (Gulwani 2011)
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https://support.office.com/en-us/article/using-flash-fill-in-excel-3f9bcf1e-db93-4890-94a0-1578341f73f7
https://support.office.com/en-us/article/using-flash-fill-in-excel-3f9bcf1e-db93-4890-94a0-1578341f73f7

FlashExtract

Data Extraction by Examples (Le and Gulwani 2014)

Show: 20 - 1-20 Next>

Title / Author Cited by  Year
Finding bugs with a constraint solver
[ 197 2000
ACM SIGSOFT Software Engineering Notes 25 (5), 14-25
Associating synchronization constraints with data in an object-oriented language
| I 176 2006
ACM SIGPLAN Notices 41 (1), 334-345
Some Shortcomings of OCL, the Object Constraint Language of UML.
[ 81 2000
TOOLS (34), 555-562
Model checking software systems: A case study
68 1995

ACM SIGSOFT Software Engineering Notes 20 (4), 128-139
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Hades

Transformations on Hierarchically Structured Data (Yaghmazadeh et al. 2016)

Original directory

Desired directory

Pop |
@
bliss.mp3 i

Jazz Rock

Rock
Adele [Muse |
nalma flac

naima.flac help.ogg m

help 0gg
blist.flac tred-mp3

bliss.flac
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Sketch-N-Sketch

Programmatic and Direct Manipulation Together (Chugh et al. 2016)

(C) Suppose the user clicks on the third box from the left
(colored darker in red for emphasis) and drags it to a new

(A) Excerpt from prelude.little position down and to the right (colored lighter in gray):

(defrec range (A(i j) I
(if (> i j) nil
(cons i (range (+ 1% 1) D))

(def zeroTo (An (range 0% (- n 1))))
(D) SKETCH-N-SKETCH synthesizes four candidate

(B) sineWaveOfBoxes.little updates to the program, which have the following effects:

(def [x0 yO w h sep amp] [60 120 20 90 30 60])
(def n 12!{3-30})
(def boxi (Ai I I
(let xi (+ x0 (* i sep))
(let yi (- yO (* amp (sin (* i (/ twoPi n)))))
(rect ’lightblue’ xi yi w h)))))

(svg (map boxi (zeroTo n))) I I
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Natural Language Programming
Program synthesis using Natural Language (Desai et al. 2016)

An end user says: “l would like the time of your earliest flight in the
morning from Philadelphia to Washington on American Airlines.”

Then it is translated to a domain-specific language program:

ColSelect(DEP_TIME, RowMin(DEP_TIME,
RowPred(EgDepart (PHILADELPHIA, Time(MORNING)),
EqArrive (WASHINGTON, Time(ANY)),
EqAirline (AMERICAN))))
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Smart Education

Automated Feedback Generation for Introductory Programming Assignments (Singh,

Gulwani, and Solar-Lezama 2013)

def computeDeriv(poly):

length = int(len(poly)-1)

i = length

deriv = range(1l,length)

if len(poly) == 1:
deriv = [0]

else:
while i >= 0:

new = poly[i] * i

i-=1
deriv[i] =
return deriv

Paul Zhu (School of Software)

The program requires 2 changes:

® In the expression range(l, length) in line 4,

increment length by 1.

¢ In the comparison expression (i >= 0) in line

8, change operator >=to !=.
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Scythe

Synthesizing Highly Expressive SQL Queries by Examples (Wang, Cheung, and Bodik

2017)
1>
£5! oid | val T
id | date | uid T | 30 e T T o
T | 1225 | 1 1| 10 o 1 2 | 05 4
1 12/25 1 1 30
2 11721 1 1 10 4 12/24 2 2 10
4 12/24 2 2 50
2 10
Select *
From (Select *
From Tl
Where Tl.date = 12/24
Or Tl.date = 12/25) T3
Join (Select oid, Max(val)
From (Select *
From T2
Where T2.val < 50) T4
Group By oid) T5
On T3.uid = T5.o0id
Paul Zhu (School of Software) Program Synthesis May 27, 2019
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AutoMerge

Conflict Resolution for Structured Merge (Zhu and He 2018)

includes

expected

constructed VSA
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S3

Syntax- and Semantic-guided Repair Synthesis (Le et al. 2017)

if (sourceExcerpt != null) {

1

2

3 -if (excerpt.equals(LINE) &% @ <= charno

4 - && charno < sourceExcerpt.length()) {
5 +if (excerpt.equals(LINE) &% @ <= charno

6 + && charno <= sourceExcerpt.length()) {
7

8

3

Figure 1: A bug in Closure compiler, revision 1e070472. The
bug is at lines 3-4. The developer fix is shown on lines 5-6;
it turns a < to a < in the second line of the if condition.

Input Desired
M1) M2)
Test | charno  excerpt.equals(LINE)  sourceExcerpt.length() Olltpllt
A ‘ 7 true 7 ‘ true
B | 10 true 10 | true

Figure 2: Input-output examples for both variables and con-
ditions, extracted for the Closure compiler bug described in
Figure 1. We use M1 and M2 to refer to the conditions in
columns 3-4 in subsequent exposition. The last column rep-
resents the desired output of the overall branch decision.
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Compilation Error Repair

Parsing Tree Transformation Synthesis (under review)

1 public class MethodeReturn : MonoBehaviour
2 {

3 static void LongHypo(float a, float b)
4 {

5 float SommeCar = a * a + b * b;

6 return SommeCar;

7 A

8 }

9

10 void Start()

11 {

12 float result = LongHypo(3, 4);

13 Debug.Log(result);

14 3}

15 3}

Synthesized repair: return type void is changed to float for LongHypo.
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SyPet

Component-based Synthesis for Complex APIls (Feng et al. 2017)

Area rotate(Area obj, Point2D pt, double angle) {

public void test1() { AffineTransform at = new AffineTransform();
Area al = new Area(new Rectangle(0, 0, 10, 2)); double x = pt.getX();
Area a2 = new Area(new Rectangle(-2, 0, 2, 10)); double y = pt.getY();
Point2D p = new Point2D.Double(0, 0); at.setToRotation(angle, x, y);
assertTrue(a2.equals(rotate(al, p, Math.PI/2))); Area obj2 = obj.createTransformedArea(at);
3} return obj2;
}

2
I I )
createTransShape > KA 7 \
> =|
1 I
. create

invert TransArea

1
toString

N

setToRotation Ky
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Interactive Parser Synthesis by Example
(Leung, Sarracino, and Lerner 2015)

©
r
parsity [EIEIETE]
[ident ‘ 1 e ;
fumeral
string (a) j
pxpr ]
= 5 fun square X = X * X ;
(b) ff\ma:eawh=w*h;
7
8z-y*xareaxy+ 2z ;
9

Select Resolution:

@

©

r
4Prev = Next Resolve Ambiguity

ex] 12
ex] +

expr + — 8

® "

expr = expr '+' expr {left}

®

Figure 1. The Parsify user interface: (a) File View, (b) Legend,
(c) Label Box, (d) Label Button, (¢) Parse Tree Pane, (f) Resolution

Pane, and (g) Negative Label
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Bonsali
Synthesis-based Reasoning for Type Systems (Chandra and Bodik 2017)

syntactically well-typed
correct programs programs
random v M X
Parser Typecheck Interpreter counterexample!
program / /' /_,I
Random fuzzer Syntactic fuzzer Type fuzzer Bonsai checker
samples all programs samples grammar derivations samples typesafe programs reasons from runtime failures
7 I T
i ' i
i | i
syntax rules syntax + type rules syntax + typechecker +

interpreter
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Program Systhesis Helps!

Many people can benefit from it:
@ end users
@ developers
@ educators & learners

@ researchers

A lot of fields are studying it:
@ programming languages
@ software development
@ program repair
@ program analysis & verification
°

machine learning

Paul Zhu (School of Software) Program Synthesis May 27, 2019 19 /47
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An Excel Task

Example (Month Extraction)

Input v1 Output

01/21/2001 01
22.02.2002 02
2003-23-03 03
06/01/2019 7

v

Bob specifies what he wants to do by filling in the output cell for the first
three rows. Now he wants Excel to finish the remaining rows.

Paul Zhu (School of Software)
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Regular Expressions?

Bob asks Alice, and Alice says: “You can use regular expressions!”

Now, Bob has two problems...

Paul Zhu (School of Software) Program Synthesis



Programming by Examples

Features:
@ input-output examples as specification

@ enable non-programmers to create programs for automating
repetitive tasks

Challenges:
@ description of program space
@ representation of program space

@ disambiguation
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Domain-specific Language (DSL) of FlashFill

Program P

Bool b

Conjunction d
Predicate w

Trace expression e
Atomic expression f
Position p

Regular expression r
Token t

Character set C
Integer expression ¢

Switch((b1, e1), ..., (bn, en))
iVdoV---Vd,

ML AT N+ NTp

Match(v;, r, k) | =Match(v;, r, k)
Concat(f,e) | f

SubStr(v;, p1, p2) | Const(s) | Loop(Aw.e)
CPos(k) | Pos(ry, 12, €)

tity -ty

C+|["Cl+|Start |[End | . |- |*]|/]---
[0-9] | [A-Z] | [a-z] | [A-Za-z] | ---

k | kiw + ko

where k denotes an integer, s denotes a string, w binds to an integer,
and v; refers to the /-th column of input.

Paul Zhu (School of Software)
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DSL is Dead?

Shriram Krishnamurthi once! said: “These are the only choices in life for

a configuration language: it grows up to a programming language, or it
dies.”

@ Gradle build scripts are written using a variant of Groovy/Kotlin.

@ Sbt can execute a Scala script containing dependency declarations or
other settings.

'https://www.youtube.com/watch?v=3N__tvmZrzc

Paul Zhu (School of Software) Program Synthesis May 27, 2019 26 /47


https://www.youtube.com/watch?v=3N__tvmZrzc

Expressive? Yes

Example (Month Extraction)

Input vq Output

01/21/2001 01
22.02.2002 02
2003-23-03 03

Program: Switch((b1, e1), (b2, €2), (b3, €3)), where
@ by = Match(vy, /)
@ bp = Match(vy, .)
bs = Match(vy, -)
@ e = SubStr(vy, Pos(StartToken, €, 1), Pos(e, /, 1))
@ e = SubStr(vy, Pos(., €, 1), Pos(g, ., 2))
@ e3 = SubStr(vy, Pos(-, €, 2), Pos(EndToken, €, 1))

Paul Zhu (School of Software) Program Synthesis May 27, 2019 27/ 47



. and No

Example (To Lower Case)

Input v;  Output

HELLO hello
World world
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Learning Traces: Motivation

e ::= Concat(f, e) | f‘

Example

All trace expressions yielding “abc” could be any one of the following:
@ all atomic expressions yielding “abc”
@ concatenations of all atomic expressions yielding “ab” and all trace

expressions yielding “c”

@ concatenations of all atomic expressions yielding “a” and all trace
expressions yielding “bc”

Paul Zhu (School of Software) Program Synthesis May 27, 2019 29 /47



Learning Traces: Motivation

e ::= Concat(f, e) | f‘

Example
All trace expressions yielding “abc” could be any one of the following:
@ all atomic expressions yielding “abc”

@ all concatenations of a possible split of “abc”

abc

Paul Zhu (School of Software) Program Synthesis May 27, 2019 30/ 47



Version Space Algebra (VSA)

@ First defined by Mitchell 1982, and then expanded upon program
synthesis by Gulwani 2011; Polozov and Gulwani 2015.

@ Succint representation by its memory-sharing mechanism.

VSAN = {Pi, P, ..., Pk} (explicit)
| NiUN2U---UNg  (union)
| Fu(N1, No, .., Nie)  (join)

where each VSA node represents a set of concrete programs:
[{P1..... Pl ={P1..... Py}
[NLU - UN] = [N] U= U [Ne]
[Fu(N1, ... Nl = {F(P1, ..., Px) | Pr € [Ni]. ..., P € [Ni]}

Paul Zhu (School of Software) Program Synthesis May 27, 2019
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Learning Traces: VSA Representation

e ::= Concat(f, e) | f‘

Let ;‘;2/3 1?1V2 etc. be the VSA for atomic expressions yielding resp.

abc”, “ab”, etc. Then the VSA for trace expressions yielding “abc” is:
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Deductive Synthesis

PE®
Programs are expressed by Rule
. PrE=o, ..., Py =@
a DSL terminal
N{Pl ..... Pkb: 1)
PrE¢ ..., P = ¢

a DSL nonterminal with k choices — —

a k-ary DSL operator F

In the last case, we need a witness function for F to compute ¢4, ...,
from ¢.

Paul Zhu (School of Software) Program Synthesis May 27, 2019
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Witness Functions give Reverse Semantics

@ Semantics: given [f], = s1 and [e], = s2, compute the output for
[Concat(f, e)]s, i.e. s1 concatenates with s,.

@ Witness function: given Concatw(?,'é) = ¢, find ¢1 and ¢ such
that f = ¢1 and e = ¢».

@ A specification ¢ is a set of pairs of an input state with an output
string.

@ Reverse semantics: given [Concat(f, e)], = s, find all possible [f]s
and [e], i.e. all concatenations which yields s.
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Ranking

Based upon Occam’s razor:

@ A Concat constructor is simpler than another one if it contains
smaller number of arguments or its arguments are pairwise simpler.

@ SubStr-expressions are simpler than Const-expressions.
@ Pos-expressions are simpler than CPos-expressions.

@ Start and End are simpler than all other tokens.

@ etc.

Alternatively, scoring functions (e.g. in PROSE) and even machine
learning techniques (e.g. Ellis and Gulwani 2017) come to rescue here.
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Artifacts

Microsoft PROgram Synthesis using Examples SDK
@ Tutorial: https://microsoft.github.io/prose
@ Samples: https://github.com/microsoft/prose
@ Platform: .NET Framework, .NET Core

@ Warning: the official document may be inconsistent with the
implementation, and some SDK APIs may behave unexpectedly

My implementation: https://github.com/paulzfm/StringProcessing
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Logical Programming
In Prolog?, one may specify a knowledge base:

likes(sam,Food) :- indian(Food), mild(Food).
likes(sam,Food) :- chinese(Food).
likes(sam,chips).

indian(curry).
indian(tandoori).
mild(tandoori).
chinese(chow_mein).
chinese(jiao_zi).

and execute a query
?- likes(sam, X).
whose solutions are

X = tandoori ; X = chow_mein ; X = jiao_zi ; X = chips.

2http://www. swi-prolog.org
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Make Logical Programming Great Again?

Next-paradigm programming languages could be based on any of
several potential technologies — e.g., perhaps on machine learning
and statistical techniques, or on SMT solvers and symbolic rea-
soning. Regardless of the technology, however ... “principles”:

@ Productivity and Performance Tied Together
@ Need For Firm Mental Grounding

o Workflows Will Change
— Yannis Smaragdakis 3

Also, he invented a “theorem”:

Programs # Algorithms + Data Structures
Compiler = Algorithms + Data Structures

3ht’cps ://yanniss.github.io/next-paradigm-apr30-2019.pdf
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We've Seen this

Given a DSL expressing bitwise operations:

program P = plus(Eq, Ez) | mul(Ey, E2) | shi(E, C) | shr(E, C)
expression E = x| C
8-bit constant C ::= (00000000), | (00000001)5 | --- | (11111111),

where the input variable x is bound to a 8-bit unsigned integer.

We hope to synthesize a program P satisfying the specification
¢ =Vx.P(x) > 0.

In other words, find an instantiation for the sketch P =7 wrt ¢.
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Demonstration

Rosette* is a solver-aided programming language based on Racket, which
combines verification and sketch-based synthesis.

The example comes from Torlak and Bodik 2014.

*https://docs.racket-lang.org/rosette-guide/index.html
Paul Zhu (School of Software) Program Synthesis May 27, 2019 42 /47
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Will Program Synthesis Change the World?

Bad news:
@ Scalability is a big issue
@ Yet not very practical for industry
Good news:
@ Many people are already benefit from PBE
@ Solvers are becoming more and more efficient and powerful

@ Program synthesis is an active and interdisciplinary field

Paul Zhu (School of Software) Program Synthesis May 27, 2019 43 /47
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