
Future of Software Development?
Program Synthesis and its Application

Paul Zhu

School of Software,

Tsinghua University

May 27, 2019

Paul Zhu (School of Software) Program Synthesis May 27, 2019 1 / 47

History & Trends in Software Development

In the past:

Write programs that can work

Write programs that runs fast

Issues:

Write it once, debug it everywhere

No silver bullet

Many programmers don’t welcome changes

Nowadays and in future:

Write programs that are correct

Write programs that generate programs

Paul Zhu (School of Software) Program Synthesis May 27, 2019 2 / 47

Program Synthesis!

Program Synthesis is the task of automatically finding programs

from the underlying programming language that satisfy user in-

tent expressed in some form of constraints. (Gulwani, Polozov,

and Singh 2017)

Features:

automated programming

correctness-by-construction

v.s.

compilers

code generator

Paul Zhu (School of Software) Program Synthesis May 27, 2019 3 / 47

Today

1 Program Synthesis in Action

2 Programming by Examples

Case Study: FlashFill

3 Sketch-based Synthesis

Case Study: Rosette

Paul Zhu (School of Software) Program Synthesis May 27, 2019 4 / 47

Contents

1 Program Synthesis in Action

2 Programming by Examples

Case Study: FlashFill

3 Sketch-based Synthesis

Case Study: Rosette

Paul Zhu (School of Software) Program Synthesis May 27, 2019 5 / 47

FlashFill
Automated String Processing in Spreadsheets by Examples (Gulwani 2011)

https://support.office.com/en-us/article/
using-flash-fill-in-excel-3f9bcf1e-db93-4890-94a0-1578341f73f7

Paul Zhu (School of Software) Program Synthesis May 27, 2019 6 / 47

https://support.office.com/en-us/article/using-flash-fill-in-excel-3f9bcf1e-db93-4890-94a0-1578341f73f7
https://support.office.com/en-us/article/using-flash-fill-in-excel-3f9bcf1e-db93-4890-94a0-1578341f73f7

FlashExtract
Data Extraction by Examples (Le and Gulwani 2014)

Paul Zhu (School of Software) Program Synthesis May 27, 2019 7 / 47

Hades
Transformations on Hierarchically Structured Data (Yaghmazadeh et al. 2016)

Paul Zhu (School of Software) Program Synthesis May 27, 2019 8 / 47

Sketch-N-Sketch
Programmatic and Direct Manipulation Together (Chugh et al. 2016)

Paul Zhu (School of Software) Program Synthesis May 27, 2019 9 / 47

Natural Language Programming
Program synthesis using Natural Language (Desai et al. 2016)

An end user says: “I would like the time of your earliest flight in the

morning from Philadelphia to Washington on American Airlines.”

Then it is translated to a domain-specific language program:

ColSelect(DEP_TIME, RowMin(DEP_TIME,
RowPred(EqDepart(PHILADELPHIA, Time(MORNING)),

EqArrive(WASHINGTON, Time(ANY)),
EqAirline(AMERICAN))))

Paul Zhu (School of Software) Program Synthesis May 27, 2019 10 / 47

Smart Education
Automated Feedback Generation for Introductory Programming Assignments (Singh,

Gulwani, and Solar-Lezama 2013)

Paul Zhu (School of Software) Program Synthesis May 27, 2019 11 / 47

Scythe
Synthesizing Highly Expressive SQL Queries by Examples (Wang, Cheung, and Bodik

2017)

Paul Zhu (School of Software) Program Synthesis May 27, 2019 12 / 47

AutoMerge
Conflict Resolution for Structured Merge (Zhu and He 2018)

Paul Zhu (School of Software) Program Synthesis May 27, 2019 13 / 47

S3
Syntax- and Semantic-guided Repair Synthesis (Le et al. 2017)

Paul Zhu (School of Software) Program Synthesis May 27, 2019 14 / 47

Compilation Error Repair
Parsing Tree Transformation Synthesis (under review)

Synthesized repair: return type void is changed to float for LongHypo.

Paul Zhu (School of Software) Program Synthesis May 27, 2019 15 / 47

SyPet
Component-based Synthesis for Complex APIs (Feng et al. 2017)

Paul Zhu (School of Software) Program Synthesis May 27, 2019 16 / 47

Interactive Parser Synthesis by Example
(Leung, Sarracino, and Lerner 2015)

Paul Zhu (School of Software) Program Synthesis May 27, 2019 17 / 47

Bonsai
Synthesis-based Reasoning for Type Systems (Chandra and Bodik 2017)

Paul Zhu (School of Software) Program Synthesis May 27, 2019 18 / 47

Program Systhesis Helps!

Many people can benefit from it:

end users

developers

educators & learners

researchers

A lot of fields are studying it:

programming languages

software development

program repair

program analysis & verification

machine learning

Paul Zhu (School of Software) Program Synthesis May 27, 2019 19 / 47

Contents

1 Program Synthesis in Action

2 Programming by Examples

Case Study: FlashFill

3 Sketch-based Synthesis

Case Study: Rosette

Paul Zhu (School of Software) Program Synthesis May 27, 2019 20 / 47

An Excel Task

Example (Month Extraction)

Input v1 Output

01/21/2001 01

22.02.2002 02

2003-23-03 03

06/01/2019 ?
...

...

Bob specifies what he wants to do by filling in the output cell for the first

three rows. Now he wants Excel to finish the remaining rows.

Paul Zhu (School of Software) Program Synthesis May 27, 2019 21 / 47

Regular Expressions?

Bob asks Alice, and Alice says: “You can use regular expressions!”

Now, Bob has two problems...

Paul Zhu (School of Software) Program Synthesis May 27, 2019 22 / 47

Programming by Examples

Features:

input-output examples as specification

enable non-programmers to create programs for automating

repetitive tasks

Challenges:

description of program space

representation of program space

disambiguation

Paul Zhu (School of Software) Program Synthesis May 27, 2019 23 / 47

Contents

1 Program Synthesis in Action

2 Programming by Examples

Case Study: FlashFill

3 Sketch-based Synthesis

Case Study: Rosette

Paul Zhu (School of Software) Program Synthesis May 27, 2019 24 / 47

Domain-specific Language (DSL) of FlashFill

Program P ::= Switch((b1, e1), . . . , (bn, en))
Bool b ::= d1 ∨ d2 ∨ · · · ∨ dn

Conjunction d ::= π1 ∧ π2 ∧ · · · ∧ πn
Predicate π ::= Match(vi , r , k) | ¬Match(vi , r , k)

Trace expression e ::= Concat(f , e) | f

Atomic expression f ::= SubStr(vi , p1, p2) | Const(s) | Loop(λw .e)
Position p ::= CPos(k) | Pos(r1, r2, c)

Regular expression r ::= t1t2 · · · tn
Token t ::= C+ | [ˆC]+ | Start | End | . | - | * | / | · · ·

Character set C ::= [0-9] | [A-Z] | [a-z] | [A-Za-z] | · · ·
Integer expression c ::= k | k1w + k2

where k denotes an integer, s denotes a string, w binds to an integer,

and vi refers to the i-th column of input.

Paul Zhu (School of Software) Program Synthesis May 27, 2019 25 / 47

DSL is Dead?

Shriram Krishnamurthi once1 said: “These are the only choices in life for

a configuration language: it grows up to a programming language, or it

dies.”

Gradle build scripts are written using a variant of Groovy/Kotlin.

Sbt can execute a Scala script containing dependency declarations or

other settings.

1https://www.youtube.com/watch?v=3N tvmZrzc
Paul Zhu (School of Software) Program Synthesis May 27, 2019 26 / 47

https://www.youtube.com/watch?v=3N__tvmZrzc

Expressive? Yes

Example (Month Extraction)

Input v1 Output

01/21/2001 01

22.02.2002 02

2003-23-03 03

Program: Switch((b1, e1), (b2, e2), (b3, e3)), where

b1 = Match(v1, /)

b2 = Match(v1, .)

b3 = Match(v1, -)

e1 = SubStr(v1, Pos(StartToken, ε, 1), Pos(ε, /, 1))

e2 = SubStr(v1, Pos(., ε, 1), Pos(ε, ., 2))

e3 = SubStr(v1, Pos(-, ε, 2), Pos(EndToken, ε, 1))

Paul Zhu (School of Software) Program Synthesis May 27, 2019 27 / 47

... and No

Example (To Lower Case)

Input v1 Output

HELLO hello

World world

Paul Zhu (School of Software) Program Synthesis May 27, 2019 28 / 47

Learning Traces: Motivation

e ::= Concat(f , e) | f

Example

All trace expressions yielding “abc” could be any one of the following:

all atomic expressions yielding “abc”

concatenations of all atomic expressions yielding “ab” and all trace

expressions yielding “c”

concatenations of all atomic expressions yielding “a” and all trace

expressions yielding “bc”

Paul Zhu (School of Software) Program Synthesis May 27, 2019 29 / 47

Learning Traces: Motivation

e ::= Concat(f , e) | f

Example

All trace expressions yielding “abc” could be any one of the following:

all atomic expressions yielding “abc”

all concatenations of a possible split of “abc”

0 1 2 3

abc

a

ab

b

bc

c

Paul Zhu (School of Software) Program Synthesis May 27, 2019 30 / 47

Version Space Algebra (VSA)

First defined by Mitchell 1982, and then expanded upon program

synthesis by Gulwani 2011; Polozov and Gulwani 2015.

Succint representation by its memory-sharing mechanism.

VSA Ñ ::= {P1,P2, . . . ,Pk} (explicit)

| Ñ1 ∪ Ñ2 ∪ · · · ∪ Ñk (union)

| Fon(Ñ1, Ñ2, . . . , Ñk) (join)

where each VSA node represents a set of concrete programs:

J{P1, . . . ,Pk}K = {P1, . . . ,Pk}

JÑ1 ∪ · · · ∪ ÑkK = JÑ1K ∪ · · · ∪ JÑkK

JFon(Ñ1, . . . , Ñk)K = {F (P1, . . . ,Pk) | P1 ∈ JÑ1K, . . . ,Pk ∈ JÑkK}

Paul Zhu (School of Software) Program Synthesis May 27, 2019 31 / 47

Learning Traces: VSA Representation

e ::= Concat(f , e) | f

Let f̃123, f̃12, etc. be the VSA for atomic expressions yielding resp.

“abc”, “ab”, etc. Then the VSA for trace expressions yielding “abc” is:

∪ α

f̃123Concaton Concaton

∪β ∪ γ

f̃12f̃23 ConcatonConcaton

f̃1 f̃2 f̃3

Paul Zhu (School of Software) Program Synthesis May 27, 2019 32 / 47

Deductive Synthesis

P̃ |= φ

Programs are expressed by Rule

a DSL terminal
P1 |= φ, . . . ,Pk |= φ

{P1, . . . ,Pk} |= φ

a DSL nonterminal with k choices
P̃1 |= φ, . . . , P̃k |= φ

P̃1 ∪ · · · ∪ P̃k |= φ

a k-ary DSL operator F
P̃1 |= φ1, . . . , P̃k |= φk

Fon(P̃1, . . . , P̃k) |= φ

In the last case, we need a witness function for F to compute φ1, . . . , φk
from φ.

Paul Zhu (School of Software) Program Synthesis May 27, 2019 33 / 47

Witness Functions give Reverse Semantics

Semantics: given Jf Kσ = s1 and JeKσ = s2, compute the output for

JConcat(f , e)Kσ, i.e. s1 concatenates with s2.

Witness function: given Concaton(f̃ , ẽ) |= φ, find φ1 and φ2 such

that f̃ |= φ1 and ẽ |= φ2.

A specification φ is a set of pairs of an input state with an output

string.

Reverse semantics: given JConcat(f , e)Kσ = s, find all possible Jf Kσ
and JeKσ, i.e. all concatenations which yields s.

Paul Zhu (School of Software) Program Synthesis May 27, 2019 34 / 47

Ranking

Based upon Occam’s razor:

A Concat constructor is simpler than another one if it contains

smaller number of arguments or its arguments are pairwise simpler.

SubStr-expressions are simpler than Const-expressions.

Pos-expressions are simpler than CPos-expressions.

Start and End are simpler than all other tokens.

etc.

Alternatively, scoring functions (e.g. in PROSE) and even machine

learning techniques (e.g. Ellis and Gulwani 2017) come to rescue here.

Paul Zhu (School of Software) Program Synthesis May 27, 2019 35 / 47

Artifacts

Microsoft PROgram Synthesis using Examples SDK

Tutorial: https://microsoft.github.io/prose

Samples: https://github.com/microsoft/prose

Platform: .NET Framework, .NET Core

Warning: the official document may be inconsistent with the

implementation, and some SDK APIs may behave unexpectedly

My implementation: https://github.com/paulzfm/StringProcessing

Paul Zhu (School of Software) Program Synthesis May 27, 2019 36 / 47

https://microsoft.github.io/prose
https://github.com/microsoft/prose
https://github.com/paulzfm/StringProcessing

Contents

1 Program Synthesis in Action

2 Programming by Examples

Case Study: FlashFill

3 Sketch-based Synthesis

Case Study: Rosette

Paul Zhu (School of Software) Program Synthesis May 27, 2019 37 / 47

Logical Programming

In Prolog2, one may specify a knowledge base:

likes(sam,Food) :- indian(Food), mild(Food).
likes(sam,Food) :- chinese(Food).
likes(sam,chips).

indian(curry).
indian(tandoori).
mild(tandoori).
chinese(chow_mein).
chinese(jiao_zi).

and execute a query

?- likes(sam, X).

whose solutions are

X = tandoori ; X = chow_mein ; X = jiao_zi ; X = chips.

2http://www.swi-prolog.org
Paul Zhu (School of Software) Program Synthesis May 27, 2019 38 / 47

http://www.swi-prolog.org

Make Logical Programming Great Again?

Next-paradigm programming languages could be based on any of

several potential technologies – e.g., perhaps on machine learning

and statistical techniques, or on SMT solvers and symbolic rea-

soning. Regardless of the technology, however ... “principles”:

Productivity and Performance Tied Together

Need For Firm Mental Grounding

Workflows Will Change

– Yannis Smaragdakis 3

Also, he invented a “theorem”:

Programs 6= Algorithms + Data Structures

Compiler = Algorithms + Data Structures

3https://yanniss.github.io/next-paradigm-apr30-2019.pdf
Paul Zhu (School of Software) Program Synthesis May 27, 2019 39 / 47

https://yanniss.github.io/next-paradigm-apr30-2019.pdf

We’ve Seen this

Given a DSL expressing bitwise operations:

program P ::= plus(E1,E2) | mul(E1,E2) | shl(E ,C) | shr(E ,C)

expression E ::= x | C

8-bit constant C ::= (00000000)2 | (00000001)2 | · · · | (11111111)2

where the input variable x is bound to a 8-bit unsigned integer.

We hope to synthesize a program P satisfying the specification

φ = ∀x .P(x) > 0.

In other words, find an instantiation for the sketch P =? wrt φ.

Paul Zhu (School of Software) Program Synthesis May 27, 2019 40 / 47

Contents

1 Program Synthesis in Action

2 Programming by Examples

Case Study: FlashFill

3 Sketch-based Synthesis

Case Study: Rosette

Paul Zhu (School of Software) Program Synthesis May 27, 2019 41 / 47

Demonstration

Rosette4 is a solver-aided programming language based on Racket, which

combines verification and sketch-based synthesis.

The example comes from Torlak and Bodik 2014.

4https://docs.racket-lang.org/rosette-guide/index.html
Paul Zhu (School of Software) Program Synthesis May 27, 2019 42 / 47

https://docs.racket-lang.org/rosette-guide/index.html

Will Program Synthesis Change the World?

Bad news:

Scalability is a big issue

Yet not very practical for industry

Good news:

Many people are already benefit from PBE

Solvers are becoming more and more efficient and powerful

Program synthesis is an active and interdisciplinary field

Paul Zhu (School of Software) Program Synthesis May 27, 2019 43 / 47

References I

Kartik Chandra and Rastislav Bodik. “Bonsai: Synthesis-based Reasoning for

Type Systems”. In: Proc. ACM Program. Lang. 2.POPL (Dec. 2017),

62:1–62:34.

Ravi Chugh et al. “Programmatic and Direct Manipulation, Together at Last”.

In: Proceedings of the 37th ACM SIGPLAN Conference on Programming

Language Design and Implementation. PLDI ’16. Santa Barbara, CA, USA:

ACM, 2016, pp. 341–354.

Aditya Desai et al. “Program synthesis using natural language”. In: Proceedings

of the 38th International Conference on Software Engineering. ACM. 2016,

pp. 345–356.

Kevin Ellis and Sumit Gulwani. “Learning to Learn Programs from Examples:

Going Beyond Program Structure”. In: 2017.

Yu Feng et al. “Component-based Synthesis for Complex APIs”. In: Proceedings

of the 44th ACM SIGPLAN Symposium on Principles of Programming

Languages. POPL 2017. Paris, France: ACM, 2017, pp. 599–612.

Paul Zhu (School of Software) Program Synthesis May 27, 2019 44 / 47

References II

Sumit Gulwani. “Automating String Processing in Spreadsheets Using

Input-output Examples”. In: Proceedings of the 38th Annual ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages.

POPL ’11. Austin, Texas, USA: ACM, 2011, pp. 317–330.

Sumit Gulwani, Alex Polozov, and Rishabh Singh. Program Synthesis. Vol. 4.

NOW, 2017, pp. 1–119.

Vu Le and Sumit Gulwani. “FlashExtract: A Framework for Data Extraction by

Examples”. In: Proceedings of the 35th ACM SIGPLAN Conference on

Programming Language Design and Implementation. PLDI ’14. Edinburgh,

United Kingdom: ACM, 2014, pp. 542–553.

Xuan-Bach D. Le et al. “S3: Syntax- and Semantic-guided Repair Synthesis via

Programming by Examples”. In: Proceedings of the 2017 11th Joint Meeting on

Foundations of Software Engineering. ESEC/FSE 2017. Paderborn, Germany:

ACM, 2017, pp. 593–604.

Paul Zhu (School of Software) Program Synthesis May 27, 2019 45 / 47

References III

Alan Leung, John Sarracino, and Sorin Lerner. “Interactive Parser Synthesis by

Example”. In: Proceedings of the 36th ACM SIGPLAN Conference on

Programming Language Design and Implementation. PLDI ’15. Portland, OR,

USA: ACM, 2015, pp. 565–574.

Tom M. Mitchell. “Generalization as search”. In: Artificial Intelligence 18.2

(1982), pp. 203 –226.

Oleksandr Polozov and Sumit Gulwani. “FlashMeta: A framework for inductive

program synthesis”. In: ACM SIGPLAN Notices 50.10 (2015), pp. 107–126.

Rishabh Singh, Sumit Gulwani, and Armando Solar-Lezama. “Automated

Feedback Generation for Introductory Programming Assignments”. In:

Proceedings of the 34th ACM SIGPLAN Conference on Programming Language

Design and Implementation. PLDI ’13. Seattle, Washington, USA: ACM, 2013,

pp. 15–26.

Emina Torlak and Rastislav Bodik. “A Lightweight Symbolic Virtual Machine for

Solver-aided Host Languages”. In: Proceedings of the 35th ACM SIGPLAN

Conference on Programming Language Design and Implementation. PLDI ’14.

Edinburgh, United Kingdom: ACM, 2014, pp. 530–541.

Paul Zhu (School of Software) Program Synthesis May 27, 2019 46 / 47

References IV

Chenglong Wang, Alvin Cheung, and Rastislav Bodik. “Synthesizing Highly

Expressive SQL Queries from Input-output Examples”. In: Proceedings of the

38th ACM SIGPLAN Conference on Programming Language Design and

Implementation. PLDI 2017. Barcelona, Spain: ACM, 2017, pp. 452–466.

Navid Yaghmazadeh et al. “Synthesizing Transformations on Hierarchically

Structured Data”. In: Proceedings of the 37th ACM SIGPLAN Conference on

Programming Language Design and Implementation. PLDI ’16. Santa Barbara,

CA, USA: ACM, 2016, pp. 508–521.

Fengmin Zhu and Fei He. “Conflict Resolution for Structured Merge via Version

Space Algebra”. In: Proc. ACM Program. Lang. 2.OOPSLA (Oct. 2018),

166:1–166:25.

Paul Zhu (School of Software) Program Synthesis May 27, 2019 47 / 47

	Program Synthesis in Action
	Programming by Examples
	Case Study: FlashFill

	Sketch-based Synthesis
	Case Study: Rosette

	References

