Future of Software Development?
Program Synthesis and its Application

Paul Zhu

School of Software,
Tsinghua University

May 27, 2019

Paul Zhu (School of Software) Program Synthesis

History & Trends in Software Development

In the past:

@ Write programs that can work

@ Write programs that runs fast
Issues:

@ Write it once, debug it everywhere

@ No silver bullet

@ Many programmers don't welcome changes
Nowadays and in future:

@ Write programs that are correct

@ Write programs that generate programs

Paul Zhu (School of Software) Program Synthesis May 27, 2019

2/47

Program Synthesis!

Program Synthesis is the task of automatically finding programs
from the underlying programming language that satisfy user in-
tent expressed in some form of constraints. (Gulwani, Polozov,
and Singh 2017)

Features:

@ automated programming

@ correctness-by-construction
V.S.

@ compilers

@ code generator

Paul Zhu (School of Software) Program Synthesis May 27, 2019 3/47

Today

@ Program Synthesis in Action

e Programming by Examples
@ Case Study: FlashFill

© Sketch-based Synthesis
@ Case Study: Rosette

Paul Zhu (School of Software)

Program Synthesis

Contents

ﬂ Program Synthesis in Action

Paul Zhu (School of Software) Program Synthesis

FlashFill

Automated String Processing in Spreadsheets by Examples (Gulwani 2011)

S
B (e} |- F G

Johanna Lorenz Senior Engineer Johanal. Johanna Jorenz iohannl@contoso.com
Irvin Sayers Project Manager, Co-Project Lead Irvin$ Irvin
Lidia Holloway Product Manager, Co-Project Lead LidiaH Lidia i
Henrietta Mueller Developer Henrietta
Ben Walters Tester BenW Ben
[Megan Bowen [Morketing Manager Megand Megan *
Enrico Cattaneo Attorney EnricoC. Enrico
Pradeep Gupta Accountant PradeepG Pradeep
Adele Vance Developer AdeleV Adele
Alex Wilber Tester AlexW Alex
|Allen Deyoung Developer AllenD Allen
Brion Johnson Engineer Brian) Brian
Emily Braun Engineer EmilyB Emily
Lee Gu Developer LeeG Lee
Patti Fernandez Tester Pattif Patti
|Miriam Graham Developer MiriomG Miriom

Program S

https://support.office.com/en-us/article/using-flash-fill-in-excel-3f9bcf1e-db93-4890-94a0-1578341f73f7
https://support.office.com/en-us/article/using-flash-fill-in-excel-3f9bcf1e-db93-4890-94a0-1578341f73f7

FlashExtract

Data Extraction by Examples (Le and Gulwani 2014)

Show: 20 - 1-20 Next>

Title / Author Cited by Year
Finding bugs with a constraint solver
[197 2000
ACM SIGSOFT Software Engineering Notes 25 (5), 14-25
Associating synchronization constraints with data in an object-oriented language
| I 176 2006
ACM SIGPLAN Notices 41 (1), 334-345
Some Shortcomings of OCL, the Object Constraint Language of UML.
[81 2000
TOOLS (34), 555-562
Model checking software systems: A case study
68 1995

ACM SIGSOFT Software Engineering Notes 20 (4), 128-139

Paul Zhu (School of Software) Program Synthesis May 27, 2019 7/47

Hades

Transformations on Hierarchically Structured Data (Yaghmazadeh et al. 2016)

Original directory

Desired directory

Pop |
@
bliss.mp3 i

Jazz Rock

Rock
Adele [Muse |
nalma flac

naima.flac help.ogg m

help 0gg
blist.flac tred-mp3

bliss.flac

Paul Zhu (School of Software) Program Synthesis

Sketch-N-Sketch

Programmatic and Direct Manipulation Together (Chugh et al. 2016)

(C) Suppose the user clicks on the third box from the left
(colored darker in red for emphasis) and drags it to a new

(A) Excerpt from prelude.little position down and to the right (colored lighter in gray):

(defrec range (A(i j) I
(if (> i j) nil
(cons i (range (+ 1% 1) D))

(def zeroTo (An (range 0% (- n 1))))
(D) SKETCH-N-SKETCH synthesizes four candidate

(B) sineWaveOfBoxes.little updates to the program, which have the following effects:

(def [x0 yO w h sep amp] [60 120 20 90 30 60])
(def n 12!{3-30})
(def boxi (Ai I I
(let xi (+ x0 (* i sep))
(let yi (- yO (* amp (sin (* i (/ twoPi n)))))
(rect ’lightblue’ xi yi w h)))))

(svg (map boxi (zeroTo n))) I I

Paul Zhu (School of Software) Program Synthesis May 27, 2019 9/47

Natural Language Programming
Program synthesis using Natural Language (Desai et al. 2016)

An end user says: “l would like the time of your earliest flight in the
morning from Philadelphia to Washington on American Airlines.”

Then it is translated to a domain-specific language program:

ColSelect(DEP_TIME, RowMin(DEP_TIME,
RowPred(EgDepart (PHILADELPHIA, Time(MORNING)),
EqArrive (WASHINGTON, Time(ANY)),
EqAirline (AMERICAN))))

Paul Zhu (School of Software) Program Synthesis May 27, 2019 10/ 47

Smart Education

Automated Feedback Generation for Introductory Programming Assignments (Singh,

Gulwani, and Solar-Lezama 2013)

def computeDeriv(poly):

length = int(len(poly)-1)

i = length

deriv = range(1l,length)

if len(poly) == 1:
deriv = [0]

else:
while i >= 0:

new = poly[i] * i

i-=1
deriv[i] =
return deriv

Paul Zhu (School of Software)

The program requires 2 changes:

® In the expression range(l, length) in line 4,

increment length by 1.

¢ In the comparison expression (i >= 0) in line

8, change operator >=to !=.

Program Synthesis

May 27, 2019

11/47

Scythe

Synthesizing Highly Expressive SQL Queries by Examples (Wang, Cheung, and Bodik

2017)
1>
£5! oid | val T
id | date | uid T | 30 e T T o
T | 1225 | 1 1| 10 o 1 2 | 05 4
1 12/25 1 1 30
2 11721 1 1 10 4 12/24 2 2 10
4 12/24 2 2 50
2 10
Select *
From (Select *
From Tl
Where Tl.date = 12/24
Or Tl.date = 12/25) T3
Join (Select oid, Max(val)
From (Select *
From T2
Where T2.val < 50) T4
Group By oid) T5
On T3.uid = T5.o0id
Paul Zhu (School of Software) Program Synthesis May 27, 2019

12/47

AutoMerge

Conflict Resolution for Structured Merge (Zhu and He 2018)

includes

expected

constructed VSA

Paul Zhu (School of Software) Program Synthesis May 27, 2019 13 /47

S3

Syntax- and Semantic-guided Repair Synthesis (Le et al. 2017)

if (sourceExcerpt != null) {

1

2

3 -if (excerpt.equals(LINE) &% @ <= charno

4 - && charno < sourceExcerpt.length()) {
5 +if (excerpt.equals(LINE) &% @ <= charno

6 + && charno <= sourceExcerpt.length()) {
7

8

3

Figure 1: A bug in Closure compiler, revision 1e070472. The
bug is at lines 3-4. The developer fix is shown on lines 5-6;
it turns a < to a < in the second line of the if condition.

Input Desired
M1) M2)
Test | charno excerpt.equals(LINE) sourceExcerpt.length() Olltpllt
A ‘ 7 true 7 ‘ true
B | 10 true 10 | true

Figure 2: Input-output examples for both variables and con-
ditions, extracted for the Closure compiler bug described in
Figure 1. We use M1 and M2 to refer to the conditions in
columns 3-4 in subsequent exposition. The last column rep-
resents the desired output of the overall branch decision.

Paul Zhu (School of Software) Program Synthesis May 27, 2019

14 /47

Compilation Error Repair

Parsing Tree Transformation Synthesis (under review)

1 public class MethodeReturn : MonoBehaviour
2 {

3 static void LongHypo(float a, float b)
4 {

5 float SommeCar = a * a + b * b;

6 return SommeCar;

7 A

8 }

9

10 void Start()

11 {

12 float result = LongHypo(3, 4);

13 Debug.Log(result);

14 3}

15 3}

Synthesized repair: return type void is changed to float for LongHypo.

Paul Zhu (School of Software) Program Synthesis May 27, 2019 15 /47

SyPet

Component-based Synthesis for Complex APIls (Feng et al. 2017)

Area rotate(Area obj, Point2D pt, double angle) {

public void test1() { AffineTransform at = new AffineTransform();
Area al = new Area(new Rectangle(0, 0, 10, 2)); double x = pt.getX();
Area a2 = new Area(new Rectangle(-2, 0, 2, 10)); double y = pt.getY();
Point2D p = new Point2D.Double(0, 0); at.setToRotation(angle, x, y);
assertTrue(a2.equals(rotate(al, p, Math.PI/2))); Area obj2 = obj.createTransformedArea(at);
3} return obj2;
}

2
I I)
createTransShape > KA 7 \
> =|
1 I
. create

invert TransArea

1
toString

N

setToRotation Ky

Paul Zhu (School of Software) Program Synthesis May 27, 2019 16 / 47

Interactive Parser Synthesis by Example
(Leung, Sarracino, and Lerner 2015)

©
r
parsity [EIEIETE]
[ident ‘ 1 e ;
fumeral
string (a) j
pxpr]
= 5 fun square X = X * X ;
(b) ff\ma:eawh=w*h;
7
8z-y*xareaxy+ 2z ;
9

Select Resolution:

@

©

r
4Prev = Next Resolve Ambiguity

ex] 12
ex] +

expr + — 8

® "

expr = expr '+' expr {left}

®

Figure 1. The Parsify user interface: (a) File View, (b) Legend,
(c) Label Box, (d) Label Button, (¢) Parse Tree Pane, (f) Resolution

Pane, and (g) Negative Label

Paul Zhu (School of Software) Program Synthesis

May 27, 2019

17 /47

Bonsali
Synthesis-based Reasoning for Type Systems (Chandra and Bodik 2017)

syntactically well-typed
correct programs programs
random v M X
Parser Typecheck Interpreter counterexample!
program / /' /_,I
Random fuzzer Syntactic fuzzer Type fuzzer Bonsai checker
samples all programs samples grammar derivations samples typesafe programs reasons from runtime failures
7 I T
i ' i
i | i
syntax rules syntax + type rules syntax + typechecker +

interpreter

il Zhu (School of Software) Program Synthesis

Program Systhesis Helps!

Many people can benefit from it:
@ end users
@ developers
@ educators & learners

@ researchers

A lot of fields are studying it:
@ programming languages
@ software development
@ program repair
@ program analysis & verification
°

machine learning

Paul Zhu (School of Software) Program Synthesis May 27, 2019 19 /47

Contents

e Programming by Examples
@ Case Study: FlashFill

Paul Zhu (School of Software) Program Synthesis

An Excel Task

Example (Month Extraction)

Input v1 Output

01/21/2001 01
22.02.2002 02
2003-23-03 03
06/01/2019 7

v

Bob specifies what he wants to do by filling in the output cell for the first
three rows. Now he wants Excel to finish the remaining rows.

Paul Zhu (School of Software)

Program Synthesis

May 27, 2019

21/47

Regular Expressions?

Bob asks Alice, and Alice says: “You can use regular expressions!”

Now, Bob has two problems...

Paul Zhu (School of Software) Program Synthesis

Programming by Examples

Features:
@ input-output examples as specification

@ enable non-programmers to create programs for automating
repetitive tasks

Challenges:
@ description of program space
@ representation of program space

@ disambiguation

Paul Zhu (School of Software) Program Synthesis May 27, 2019 23 /47

Contents

@ Program Synthesis in Action

e Programming by Examples
@ Case Study: FlashFill

© Sketch-based Synthesis

Paul Zhu (School of Software) Program Synthesis

Domain-specific Language (DSL) of FlashFill

Program P

Bool b

Conjunction d
Predicate w

Trace expression e
Atomic expression f
Position p

Regular expression r
Token t

Character set C
Integer expression ¢

Switch((b1, e1), ..., (bn, en))
iVdoV---Vd,

ML AT N+ NTp

Match(v;, r, k) | =Match(v;, r, k)
Concat(f,e) | f

SubStr(v;, p1, p2) | Const(s) | Loop(Aw.e)
CPos(k) | Pos(ry, 12, €)

tity -ty

C+|["Cl+|Start |[End | . |- |*]|/]---
[0-9] | [A-Z] | [a-z] | [A-Za-z] | ---

k | kiw + ko

where k denotes an integer, s denotes a string, w binds to an integer,
and v; refers to the /-th column of input.

Paul Zhu (School of Software)

Program Synthesis May 27, 2019 25 /47

DSL is Dead?

Shriram Krishnamurthi once! said: “These are the only choices in life for

a configuration language: it grows up to a programming language, or it
dies.”

@ Gradle build scripts are written using a variant of Groovy/Kotlin.

@ Sbt can execute a Scala script containing dependency declarations or
other settings.

'https://www.youtube.com/watch?v=3N__tvmZrzc

Paul Zhu (School of Software) Program Synthesis May 27, 2019 26 /47

https://www.youtube.com/watch?v=3N__tvmZrzc

Expressive? Yes

Example (Month Extraction)

Input vq Output

01/21/2001 01
22.02.2002 02
2003-23-03 03

Program: Switch((b1, e1), (b2, €2), (b3, €3)), where
@ by = Match(vy, /)
@ bp = Match(vy, .)
bs = Match(vy, -)
@ e = SubStr(vy, Pos(StartToken, €, 1), Pos(e, /, 1))
@ e = SubStr(vy, Pos(., €, 1), Pos(g, ., 2))
@ e3 = SubStr(vy, Pos(-, €, 2), Pos(EndToken, €, 1))

Paul Zhu (School of Software) Program Synthesis May 27, 2019 27/ 47

. and No

Example (To Lower Case)

Input v; Output

HELLO hello
World world

Paul Zhu (School of Software) Program Synthesis

Learning Traces: Motivation

e ::= Concat(f, e) | f‘

Example

All trace expressions yielding “abc” could be any one of the following:
@ all atomic expressions yielding “abc”
@ concatenations of all atomic expressions yielding “ab” and all trace

expressions yielding “c”

@ concatenations of all atomic expressions yielding “a” and all trace
expressions yielding “bc”

Paul Zhu (School of Software) Program Synthesis May 27, 2019 29 /47

Learning Traces: Motivation

e ::= Concat(f, e) | f‘

Example
All trace expressions yielding “abc” could be any one of the following:
@ all atomic expressions yielding “abc”

@ all concatenations of a possible split of “abc”

abc

Paul Zhu (School of Software) Program Synthesis May 27, 2019 30/ 47

Version Space Algebra (VSA)

@ First defined by Mitchell 1982, and then expanded upon program
synthesis by Gulwani 2011; Polozov and Gulwani 2015.

@ Succint representation by its memory-sharing mechanism.

VSAN = {Pi, P, ..., Pk} (explicit)
| NiUN2U---UNg (union)
| Fu(N1, No, .., Nie) (join)

where each VSA node represents a set of concrete programs:
[{P1..... Pl ={P1..... Py}
[NLU - UN] = [N] U= U [Ne]
[Fu(N1, ... Nl = {F(P1, ..., Px) | Pr € [Ni]. ..., P € [Ni]}

Paul Zhu (School of Software) Program Synthesis May 27, 2019

31/47

Learning Traces: VSA Representation

e ::= Concat(f, e) | f‘

Let ;‘;2/3 1?1V2 etc. be the VSA for atomic expressions yielding resp.

abc”, “ab”, etc. Then the VSA for trace expressions yielding “abc” is:

Paul Zhu (School of Software) Program Synthesis May 27, 2019 32 /47

Deductive Synthesis

PE®
Programs are expressed by Rule
. PrE=o, ..., Py =@
a DSL terminal
N{Pl Pkb: 1)
PrE¢ ..., P = ¢

a DSL nonterminal with k choices — —

a k-ary DSL operator F

In the last case, we need a witness function for F to compute ¢4, ...,
from ¢.

Paul Zhu (School of Software) Program Synthesis May 27, 2019

33/47

Witness Functions give Reverse Semantics

@ Semantics: given [f], = s1 and [e], = s2, compute the output for
[Concat(f, e)]s, i.e. s1 concatenates with s,.

@ Witness function: given Concatw(?,'é) = ¢, find ¢1 and ¢ such
that f = ¢1 and e = ¢».

@ A specification ¢ is a set of pairs of an input state with an output
string.

@ Reverse semantics: given [Concat(f, e)], = s, find all possible [f]s
and [e], i.e. all concatenations which yields s.

Paul Zhu (School of Software) Program Synthesis May 27, 2019 34 /47

Ranking

Based upon Occam’s razor:

@ A Concat constructor is simpler than another one if it contains
smaller number of arguments or its arguments are pairwise simpler.

@ SubStr-expressions are simpler than Const-expressions.
@ Pos-expressions are simpler than CPos-expressions.

@ Start and End are simpler than all other tokens.

@ etc.

Alternatively, scoring functions (e.g. in PROSE) and even machine
learning techniques (e.g. Ellis and Gulwani 2017) come to rescue here.

Paul Zhu (School of Software) Program Synthesis May 27, 2019 35/47

Artifacts

Microsoft PROgram Synthesis using Examples SDK
@ Tutorial: https://microsoft.github.io/prose
@ Samples: https://github.com/microsoft/prose
@ Platform: .NET Framework, .NET Core

@ Warning: the official document may be inconsistent with the
implementation, and some SDK APIs may behave unexpectedly

My implementation: https://github.com/paulzfm/StringProcessing

Paul Zhu (School of Software) Program Synthesis May 27, 2019 36 /47

https://microsoft.github.io/prose
https://github.com/microsoft/prose
https://github.com/paulzfm/StringProcessing

Contents

© Sketch-based Synthesis
@ Case Study: Rosette

Paul Zhu (School of Software) Program Synthesis

Logical Programming
In Prolog?, one may specify a knowledge base:

likes(sam,Food) :- indian(Food), mild(Food).
likes(sam,Food) :- chinese(Food).
likes(sam,chips).

indian(curry).
indian(tandoori).
mild(tandoori).
chinese(chow_mein).
chinese(jiao_zi).

and execute a query
?- likes(sam, X).
whose solutions are

X = tandoori ; X = chow_mein ; X = jiao_zi ; X = chips.

2http://www. swi-prolog.org
Paul Zhu (School of Software) Program Synthesis May 27, 2019 38 /47

http://www.swi-prolog.org

Make Logical Programming Great Again?

Next-paradigm programming languages could be based on any of
several potential technologies — e.g., perhaps on machine learning
and statistical techniques, or on SMT solvers and symbolic rea-
soning. Regardless of the technology, however ... “principles”:

@ Productivity and Performance Tied Together
@ Need For Firm Mental Grounding

o Workflows Will Change
— Yannis Smaragdakis 3

Also, he invented a “theorem”:

Programs # Algorithms + Data Structures
Compiler = Algorithms + Data Structures

3ht’cps ://yanniss.github.io/next-paradigm-apr30-2019.pdf

Paul Zhu (School of Software) Program Synthesis May 27, 2019 39 /47

https://yanniss.github.io/next-paradigm-apr30-2019.pdf

We've Seen this

Given a DSL expressing bitwise operations:

program P = plus(Eq, Ez) | mul(Ey, E2) | shi(E, C) | shr(E, C)
expression E = x| C
8-bit constant C ::= (00000000), | (00000001)5 | --- | (11111111),

where the input variable x is bound to a 8-bit unsigned integer.

We hope to synthesize a program P satisfying the specification
¢ =Vx.P(x) > 0.

In other words, find an instantiation for the sketch P =7 wrt ¢.

Paul Zhu (School of Software) Program Synthesis May 27, 2019 40 /47

Contents

@ Program Synthesis in Action

e Programming by Examples

© Sketch-based Synthesis
@ Case Study: Rosette

Paul Zhu (School of Software) Program Synthesis

Demonstration

Rosette* is a solver-aided programming language based on Racket, which
combines verification and sketch-based synthesis.

The example comes from Torlak and Bodik 2014.

*https://docs.racket-lang.org/rosette-guide/index.html
Paul Zhu (School of Software) Program Synthesis May 27, 2019 42 /47

https://docs.racket-lang.org/rosette-guide/index.html

Will Program Synthesis Change the World?

Bad news:
@ Scalability is a big issue
@ Yet not very practical for industry
Good news:
@ Many people are already benefit from PBE
@ Solvers are becoming more and more efficient and powerful

@ Program synthesis is an active and interdisciplinary field

Paul Zhu (School of Software) Program Synthesis May 27, 2019 43 /47

References |

Kartik Chandra and Rastislav Bodik. “Bonsai: Synthesis-based Reasoning for
Type Systems”. In: Proc. ACM Program. Lang. 2.POPL (Dec. 2017),
62:1-62:34.

Ravi Chugh et al. “Programmatic and Direct Manipulation, Together at Last”.
In: Proceedings of the 37th ACM SIGPLAN Conference on Programming
Language Design and Implementation. PLDI '16. Santa Barbara, CA, USA:
ACM, 2016, pp. 341-354.

Aditya Desai et al. “Program synthesis using natural language”. In: Proceedings
of the 38th International Conference on Software Engineering. ACM. 2016,
pp. 345-356.

Kevin Ellis and Sumit Gulwani. “Learning to Learn Programs from Examples:
Going Beyond Program Structure”. In: 2017.

Yu Feng et al. “Component-based Synthesis for Complex APIs". In: Proceedings
of the 44th ACM SIGPLAN Symposium on Principles of Programming
Languages. POPL 2017. Paris, France: ACM, 2017, pp. 599-612.

Paul Zhu (School of Software) Program Synthesis

References ||

Sumit Gulwani. "Automating String Processing in Spreadsheets Using
Input-output Examples”. In: Proceedings of the 38th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages.
POPL "11. Austin, Texas, USA: ACM, 2011, pp. 317—-330.

Sumit Gulwani, Alex Polozov, and Rishabh Singh. Program Synthesis. \ol. 4.
NOW, 2017, pp. 1-119.

Vu Le and Sumit Gulwani. “FlashExtract: A Framework for Data Extraction by
Examples” . In: Proceedings of the 35th ACM SIGPLAN Conference on
Programming Language Design and Implementation. PLDI '14. Edinburgh,
United Kingdom: ACM, 2014, pp. 542-553.

Xuan-Bach D. Le et al. “S3: Syntax- and Semantic-guided Repair Synthesis via
Programming by Examples”. In: Proceedings of the 2017 11th Joint Meeting on
Foundations of Software Engineering. ESEC/FSE 2017. Paderborn, Germany:
ACM, 2017, pp. 593-604.

Paul Zhu (School of Software) Program Synthesis

References IlI

Alan Leung, John Sarracino, and Sorin Lerner. “Interactive Parser Synthesis by
Example”. In: Proceedings of the 36th ACM SIGPLAN Conference on
Programming Language Design and Implementation. PLDI '15. Portland, OR,
USA: ACM, 2015, pp. 565-574.

Tom M. Mitchell. “Generalization as search”. In: Artificial Intelligence 18.2
(1982), pp. 203 —226.

Oleksandr Polozov and Sumit Gulwani. “FlashMeta: A framework for inductive
program synthesis”. In: ACM SIGPLAN Notices 50.10 (2015), pp. 107-126.

Rishabh Singh, Sumit Gulwani, and Armando Solar-Lezama. “Automated
Feedback Generation for Introductory Programming Assignments”. In:
Proceedings of the 34th ACM SIGPLAN Conference on Programming Language
Design and Implementation. PLDI '13. Seattle, Washington, USA: ACM, 2013,
pp. 15-26.

Emina Torlak and Rastislav Bodik. “A Lightweight Symbolic Virtual Machine for
Solver-aided Host Languages”. In: Proceedings of the 35th ACM SIGPLAN
Conference on Programming Language Design and Implementation. PLDI '14.
Edinburgh, United Kingdom: ACM, 2014, pp. 530-541.

Paul Zhu (School of Software) Program Synthesis

References |V

Chenglong Wang, Alvin Cheung, and Rastislav Bodik. “Synthesizing Highly
Expressive SQL Queries from Input-output Examples”. In: Proceedings of the
38th ACM SIGPLAN Conference on Programming Language Design and
Implementation. PLDI 2017. Barcelona, Spain: ACM, 2017, pp. 452—466.

Navid Yaghmazadeh et al. “Synthesizing Transformations on Hierarchically
Structured Data". In: Proceedings of the 37th ACM SIGPLAN Conference on
Programming Language Design and Implementation. PLDI '16. Santa Barbara,
CA, USA: ACM, 2016, pp. 508-521.

Fengmin Zhu and Fei He. "“Conflict Resolution for Structured Merge via Version
Space Algebra”. In: Proc. ACM Program. Lang. 2.00OPSLA (Oct. 2018),
166:1-166:25.

Paul Zhu (School of Software) Program Synthesis

	Program Synthesis in Action
	Programming by Examples
	Case Study: FlashFill

	Sketch-based Synthesis
	Case Study: Rosette

	References

