
Grammar-Based String Refinement Types

Fengmin Zhu
CISPA Helmholtz Center for Information Security

Saarbrücken, Germany

fengmin.zhu@cispa.de

Abstract—Programmers use strings to represent variates of
data that contain internal structure or syntax. However, existing
mainstream programming languages do not provide users with
means to further narrow down the set of valid values for a string.
An invalid string input may cause runtime errors or even severe
security vulnerabilities. To address that, this paper presents
a Ph.D. research proposal on the type checking of grammar-
based string refinement types, a kind of fine-grained types for
specifying the set of valid string values via grammar. The string
refinement type system uses subtyping to capture the inclusion
relation between the languages of grammars. Based on that, we
follow a well-known bidirectional type checking framework to
combine the checking and inference of string refinement types
into one. Evaluations on real-world codebases will be conducted
to measure the practicality of this approach.

Index Terms—Refinement types, context-free grammars, type
checking, subtyping, constraint solving

I. INTRODUCTION

Strings are everywhere in programming: they are used to

encode various types of data: email addresses, URIs, tele-

phone numbers, SQL queries, JavaScript code, etc. Feeding

a function that parses an email address with a URI may

cause undesired exceptions. Even worse, inputting a string that

encodes malicious code can trigger security vulnerability if the

program indeed lacks input validation (e.g., SQL injection,

JavaScript injection). One explanation for why strings cause

errors and failures is that many mainstream programming

languages do not offer developers the means to distinguish

string values representing distinct data types and to specify

which values are valid for that data type.

To provide more fine-grained control over the string type,

inspired by the concept of refinement types [1], we propose

to introduce grammar-based string refinement types. The big

idea of refinement type is to provide additional constraints on

coarse types (here the string type), e.g., {s : str | len(s) = 5}
encodes the set of strings with length 5. Realizing that the

data types mentioned above have structure and they follow

certain syntax, it is natural to express the set of valid values

using a context-free grammar (CFG): our string refinement

type {s : str | s ∈ L(G)} encodes the set of string values

that are in L(G)—the language of G.

Making use of the syntax information conveyed in string

refinement types, we will gain “more type-safety” from static
type checking on string-manipulating programs, which helps

to avoid potential bugs and security vulnerabilities at compile

time. For example, we can check the type signature of the

following Python function:

def extract_domain(email: Email) -> Domain:
parts = email.split('@')
return parts[1]

where Email and Domain are string refinement types encoding

resp. an email address and a domain. Since RFC 5322 [2]

defines that a valid email address must comprise a local

part and a domain concatenated by an ‘@’ symbol, accessing

parts[1] will never raise IndexError. Type inference is also

an important topic for string refinement types. Suppose

"mongodb://localhost:{}/{}".format(port, dbname)

follows the grammar

<url> → mongodb://localhost:<int>/<ident>,

then we could infer that port must follow the grammar

of <int> (integers) and dbname the grammar of <ident>
(identifiers). If dbname indeed contains injected queries that

are likely to be malicious, the program does not type check,

thus security vulnerability is avoided.

II. PROBLEMS, CHALLENGES & HYPOTHESES

The central technical problems of this proposal are type

checking and type inference. These two procedures, studied

by the type system community for long, can be collapsed

into one big procedure—a.k.a. bidirectional type checking
[3]. A bidirectional type checker switches between checking
and inference mode: when the expected type of an expres-

sion is known—e.g., from user annotations, function types

(if checking arguments of a function call), or previously

inferred types—the checking mode is activated; otherwise, the

inference mode is enabled to synthesize a type based on its

sub-expressions’ types.

Challenge 1: Subtyping: To check if an expression e has

an expected type t, the trivial case is when e is a string literal

s: the problem is reduced to tell if s can be parsed by the

grammar of t. Otherwise, suppose the most precise (inferred)

type for e is {s : str | s ∈ L(G1)}, and t is {s : str |
s ∈ L(G2)}, we must check if the former is a subtype of

the latter, i.e., if G1 is a subgrammar of G2 (i.e., L(G1) ⊆
L(G2)). Therefore, subtyping relation should be brought to

string refinement types. This not only fits the object-oriented

languages (like Python) better but also uncovers the fact that

a string of G1 is also a string of a larger grammar G2.

It is well-known that in CFGs, equality checking (i.e.,
whether the two languages accept the same set of sentences)

is undecidable [4]. This further indicates there is no universal

267

2023 IEEE/ACM 45th International Conference on Software Engineering: Companion Proceedings (ICSE-Companion)

979-8-3503-2263-7/23/$31.00 ©2023 IEEE
DOI 10.1109/ICSE-Companion58688.2023.00072

way to test the subtyping relation—if a CFG is a subgrammar

of another, which makes it a technical challenge. However, we

could instead propose ad hoc algorithms that lead to sound

but incomplete type checking, and preferably the algorithms

should cover plenty of real scenarios.

Challenge 2: Grammar Inference: For type inference,

the key challenge is to compute the resulting types for var-

ious string manipulations including concatenation, substring

extraction and replacement. Concatenation is a trivial one: the

resulting grammar is simply the concatenation of the two input

grammars. But for substring extraction s[i:j], the inference

becomes nontrivial as the substring in the range [i:j] may not

correspond to a fixed nonterminal symbol in the grammar of

s. In short, type inference requires computations on grammars

and the resulting grammar should be as precise as possible.

Challenge 3: Logical Constraints Solving: Sometimes, it

is not enough to use a CFG alone; adding logical constraints

makes it more expressive and powerful. For instance, the

refinement type {s : str | s ∈ L(G) ∧ len(s) ≤ 10} requires

not only the string be in L(G), but also its length be no

longer than 10. Taking such logical constraints into account,

the subtype checker should be able to prove/disprove if one

constraint logically implies another. To discharge such proof

automatically, constraint solving is available: the technical

problem is how to encode constraints as the solver’s inputs.

Applications: String refinement types bring opportunities

for dynamic approaches too. With type annotations or inferred

types, we can check at runtime if a concrete string follows the

required syntax; so that we can discover incompatibility issues

before they cause major damage at a system level. The type

annotations can be further leveraged for data-flow analysis,

system testing, grammar-based fuzzing, and so on.

Research Hypotheses & Limitations: To fit the bidirec-

tional type checking framework better, we assume the program

code is attached with sufficient refinement type annotations,

particularly, the types of function arguments must be known.

For recursive functions, the return type must also be given

(it is inferrable on non-recursive functions). To leverage off-

the-shelf SMT solvers (e.g., Z3 [5]), the additional constraints

presented in refinement types are assumed to be in decidable

first-order logic. Since subtyping relation testing is in general

undecidable for CFGs, the type checker cannot guarantee com-

pleteness. But soundness is possible to achieve by rejecting a

subtyping relation if we don’t know how to prove/disprove it.

III. RELATED WORK

The most related work to my topic is grammar inference
of ad hoc parsers [6]. They perform a static analysis on

the source code of parsers and infer a grammar (typically a

regular expression) expressing the parser-accepted language.

Their work does not bring grammars into type checking, but

their algorithm will help to infer string refinement types for

programs that do ad hoc parsing. Another approach for learn-

ing grammars is grammar synthesis. Parsify [7] synthesizes

CFGs hierarchically and interactively from human-specified

inputs. Arvada [8] is an oracle-based algorithm learning highly

recursive CFGs from a set of positive examples.

Grammar-based fuzzing [9] is a testing technique where

valid inputs are randomly generated from a grammar. It is also

possible to attach additional constraints to grammars: from

Boolean combinations of patterns [10] to first-order logic [11].

This inspires us to also take logical constraints on strings into

account in our refinement type system.

The concept of refinement types was first invented in ML

type systems [1, 12] and later introduced in Haskell [13] and

TypeScript [14]. In those works, refinements apply language-

wide to almost every type. Particularly refining the string type

with grammars is yet still a novel and unsolved problem.

IV. EXPECTED CONTRIBUTIONS

The expected contributions of this research are as follows:

• an annotation system for developers to attach string re-

finement types into source code in mainstream languages

such as Python;

• a sound and practical subtype solver for string refinement

types (challenge 1);

• a type checker for string refinement types (challenge 2)

integrated into an existing language’s compiler such as

Python’s static typing framework mypy;

• support for first-order logical constraints in string refine-

ment types (challenge 3);

• evaluations on real-world codebases for static analysis

and bug detection.

In addition to the technical difficulties mentioned in sec-

tion II, how to integrate string refinement types into existing

compilers, and meanwhile, to maintain all the existing typing

features, is unobvious. For example, mypy relies on Python’s

type hints (PEP 484). To fit this framework better, our string

refinement types should be expressed in type hints as well.

Since mypy has no refinement types, we must extend its type

system to include this new string refinement type, recognize

it from type hints, perform type checking on it, and consider

its subtyping relations with other Python types including the

built-in str type and string literal types.

V. PLAN OF EVALUATION

The evaluation process will consist of two phases. In the

first phase, the functional correctness of the implemented type

checker will be examined using: (1) unit tests for validating

the behaviors of individual components (e.g., subtyping solver,

type synthesizer); and (2) end-to-end tests including both

(hand-crafted) well-typed and ill-typed programs for validating

the behaviors of the entire type checker—it should report type

errors for ill-typed programs and accept well-typed programs.

In the second phase, large programs extracted from real-

world codebases will be used to measure how the proposed

approach helps to detect potential bugs and vulnerabilities.

Several metrics will be studied to assess the overall perfor-

mance, such as the effort of annotating string refinement types,

the cost of performing static type checking, the number of

issues found and the proportion of false positives.

268

REFERENCES

[1] T. Freeman and F. Pfenning, “Refinement types for ml,” in Proceedings
of the ACM SIGPLAN 1991 Conference on Programming Language De-
sign and Implementation, PLDI ’91, (New York, NY, USA), p. 268–277,
Association for Computing Machinery, 1991.

[2] P. Resnick, “Internet Message Format.” RFC 5322, Oct. 2008.
[3] J. Dunfield and N. Krishnaswami, “Bidirectional typing,” ACM Comput.

Surv., vol. 54, may 2021.
[4] H. J. Hoogeboom, “Undecidable problems for context-

free grammars,” Preprint https://liacs. leidenuniv. nl/˜
hoogeboomhj/second/codingcomputations. pdf, 2015.

[5] L. de Moura and N. Bjørner, “Z3: An efficient smt solver,” in Tools
and Algorithms for the Construction and Analysis of Systems (C. R.
Ramakrishnan and J. Rehof, eds.), (Berlin, Heidelberg), pp. 337–340,
Springer Berlin Heidelberg, 2008.

[6] M. Schröder and J. Cito, “Grammars for free: Toward grammar inference
for ad hoc parsers,” in Proceedings of the ACM/IEEE 44th International
Conference on Software Engineering: New Ideas and Emerging Results,
ICSE-NIER ’22, (New York, NY, USA), p. 41–45, Association for
Computing Machinery, 2022.

[7] A. Leung, J. Sarracino, and S. Lerner, “Interactive parser synthesis by
example,” in Proceedings of the 36th ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI ’15, (New
York, NY, USA), pp. 565–574, ACM, 2015.

[8] N. Kulkarni, C. Lemieux, and K. Sen, “Learning highly recursive
input grammars,” in Proceedings of the 36th IEEE/ACM International
Conference on Automated Software Engineering, ASE ’21, p. 456–467,
IEEE Press, 2022.

[9] A. Zeller, R. Gopinath, M. Böhme, G. Fraser, and C. Holler, “The
fuzzing book,” 2019.

[10] R. Gopinath, H. Nemati, and A. Zeller, “Input algebras,” in Proceedings
of the 43rd International Conference on Software Engineering, ICSE
’21, p. 699–710, IEEE Press, 2021.

[11] D. Steinhöfel and A. Zeller, “Input invariants,” in Proceedings of the 30th
ACM Joint European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, ESEC/FSE 2022, (New
York, NY, USA), p. 583–594, Association for Computing Machinery,
2022.

[12] P. M. Rondon, M. Kawaguci, and R. Jhala, “Liquid types,” in Pro-
ceedings of the 29th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’08, (New York, NY,
USA), p. 159–169, Association for Computing Machinery, 2008.

[13] N. Vazou, E. L. Seidel, R. Jhala, D. Vytiniotis, and S. Peyton-Jones, “Re-
finement types for haskell,” in Proceedings of the 19th ACM SIGPLAN
International Conference on Functional Programming, ICFP ’14, (New
York, NY, USA), p. 269–282, Association for Computing Machinery,
2014.

[14] P. Vekris, B. Cosman, and R. Jhala, “Refinement types for typescript,”
in Proceedings of the 37th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’16, (New York, NY,
USA), p. 310–325, Association for Computing Machinery, 2016.

269

